logo

当サイトではサービス向上のためにCookieを取得します。同意いただける場合は、「同意する」ボタンをクリックしてください。
詳細は、Cookieポリシーのページをご覧ください。

We think the future of laboratory animals.

We think the future of laboratory animals.

実験動物のより良い未来を模索する

実験動物のより良い未来を模索する

メイン画像メイン画像

2022.03.03
げっ歯類の胎児・新生児の鎮痛・麻酔および安楽死に関する声明(第2版、2015年)
2022.03.03
飼養保管苦痛軽減基準の解説書に関する要望書(平成28年7月8日)
2021.09.03
JALAMシンポジウムおよびJCLAMフォーラムの開催について

新着・人気コラム

JALAM会員からの寄稿

今野 兼次郎

コンノ ケンジロウ

国立循環器病研究センター研究所

寄稿文

温故知新、前島賞」

Profile Picture

安居院 高志

アグイ タカシ

北海道大学名誉教授

YouTubeチャンネルの紹介

前JALAM会長の安居院高志先生(北大名誉教授)が、YouTubeチャンネル「ブラ野食」を開設されました。本チャンネルでは、自然散策や山菜類の魅力を発信されております。
YouTubeで「ブラ野食」を検索いただき、ご興味のある方はぜひご覧ください。
https://www.youtube.com/channel/UCmEoriPMtTlbujnPBQnY_9w

Profile Picture

特集

米国獣医学会(AVMA)動物の安楽死指針2020年版出版記念 -紹介動画-

 日本実験動物医学専門医協会は、AVMAと翻訳契約を取り交わし、「米国獣医学会 動物の安楽死指針(安楽死ガイドライン):2020年」版の翻訳本(翻訳者代表 黒澤努、鈴木真)を出版しました。本ガイドラインは、国際的に容認される具体的な安楽死法を示しており、主に獣医師を対象に記載されています。専門的ではありますが、最新の情報を網羅しており、獣医師以外の動物にかかわる方々の指針としても重要な文献です。(原文はこちら

 2013年度版から改訂された2020年版では、第3章にS1コンパニオンアニマル、S2実験動物、S3家畜、S4馬、S5鳥類、S6魚類と水生無脊椎動物、S7野生動物と7つの動物に区分されて記載されています。

 日本実験動物医学会および日本実験動物医学専門医協会は、本指針が広く周知されることで、わが国の動物福祉がより向上することを期待します。また、実験動物ならびにその他の動物の人道的な取り扱いを広めるための啓蒙活動を継続していきます。

米国獣医学会(AVMA)動物の安楽死指針(安楽死ガイドライン)2020年版の紹介

https://vimeo.com/719001280

炭酸ガスを用いた安楽死

https://vimeo.com/710990217

Compassion Fatigue(共感疲労)

https://vimeo.com/710990398
https://vimeo.com/720976209

Compassion Fatigueについて、さらに知りたい方はこちらもご覧ください。

安楽死にまつわる諸問題 part2

動物実験従事者におけるCompassion Fatigueの分類(ProQOLを用いた分類)

特集

実験動物のリホーミング

実験動物の飼養及び保管並びに苦痛の軽減に関する基準では、第4章実験等の実施上の配慮の項において、「実験に供する期間をできるだけ短くする等実験終了の時期に配慮すること」と記されています。そして、実験動物の飼養及び保管並びに苦痛の軽減に関する基準の解説によると、実験計画の立案においては、「実験や術後観察の終了の時期(人道的エンドポイント)等について、具体的な計画を立案する必要がある。(p. 114)」と解説されています。また、人道的エンドポイントとは、「実験動物を激しい苦痛から解放するために実験を終了あるいは途中で中止する時期(すなわち安楽死処置を施す時期)を意味する。(p. 142)」と解説されています。こうしたことから、動物実験の終了とは、主として安楽死処置を施すこととも捉えられます。

一方で、安楽死処置については、上述の通り実験動物を激しい苦痛から解放するための措置である反面、「安全性に加え、安楽死処置実施者が感じる精神的不安、不快感、あるいは苦痛に配慮し、科学的研究の目的を損なわない限り、心理的負担の少ない安全な方法を選択すべきである。(p. 159)」とも解説されており、実施者にとっては精神的不安、不快感、あるいは苦痛といった心理的負担を伴う措置であるということも理解されています。

このような安楽死における実施者の心理的負担に関しては、「安楽死にまつわる諸問題」についてのコラムですでに紹介されていますが、動物実験が遂行される中で、必ずしも動物は苦痛を被って実験を終えるものでもありません。こうした動物に対してはどのようにエンドポイントを考えたらよいでしょうか。これらの動物にも安楽死処置を施すのでしょうか。その心理的負担は苦痛から解放するための安楽死処置の場合よりも大きいものになるかもしれません。他に選択肢はないのでしょうか。

最近では、酪農学園大学から引き取られた実験犬「しょうゆ」の里親譲渡の話題もあり、こちらも「実験動物の里親制度」についてのコラムですでに紹介されていますが、国内でも少なからず実験動物を安楽死せずに余生を送らせるリホーミングの活動が行われています。リホーミングは動物の福祉を考えること、また実施者の心理的負担を軽減させるという点でとても有意義なことではありますが、同時に、実験動物が社会の目に触れ、動物実験に関心をもつきっかけとなるということは、社会的に適正な動物実験を考える上でもとても重要なことでもあるのではないでしょうか。

ここでは実験動物のエンドポイントとして安楽死に代わる選択肢としての可能性があるリホーミングについて、実際にリホーミングをされた方からの寄稿を交えて、文献を紹介します。多くの方が実験動物に関心を持ち、適正な動物実験を考えるきっかけとなればと思います。

文献紹介:リホームされた実験用ビーグルは、日常的な場面でどのような行動をとるのか?

製薬企業から引き取られた実験犬の、その後に関するドイツでの調査です。

文献紹介:英国で行われた実験動物のリホーミング実践に関する調査

実験動物のリホーミングに関する英国での実態調査です。

文献紹介:フィンランドにおける実験用ビーグルの最初のリホーミング:社会化訓練からフォローアップまでの完全なプロセス

フィンランドで行われた実験用ビーグルの最初のリホーミングと社会化プログラムの紹介です。

特集

コットンラット〜全身に病気を併存する不思議な実験動物〜

中村鉄平 獣医師、博士(獣医学)、北海道大学大学院獣医学研究院実験動物学教室 准教授

 皆さまの多くは実験動物と聞くとマウスやラットが頭に浮かぶのではないかと拝察いたします。実際には実験動物は多岐にわたり、私たちは目的に最も適う特性を持つ動物種を選択いたします。実験動物の特性に関する説明は成書に譲りますが、実験動物の新規特性は次々に明らかとなっています。近年では、ハダカデバネズミが老化やがんに抵抗性を持つこと(1)やハムスターがSARS-CoV-2に感受性が高いこと(2)はご記憶にある方もいらっしゃるのではないでしょうか。このコラムでは、ユニークな特性を持つコットンラットという実験動物について紹介させていただきます。

 コットンラット(英名cotton rat, 学名Sigmodon hispidus)は南北アメリカ大陸に分布するキヌゲネズミ科に属する齧歯類で、ラットの名がついていますがハムスターと近縁です。成体のコットンラットは頭胴長125-200mm、尾長75-166mm、体重70-310gとマウスとラットの中間の大きさです。雑食で、草の生い茂った草原や沼地を好んで生息します(3)。コットンラットの実験動物としての歴史は古く、1930年代にポリオウイルス感染によりヒトに類似する神経麻痺症状を発症することが見出されました。その他にも、コロナウイルスを含む様々なヒトの呼吸器感染症ウイルスへの感受性を持つことが知られ、SARS(4)やCOVID-19(5)研究にも使われています。我が国には1951年に輸入され、主に東大伝染病研究所で維持され、その後多くの研究機関に分与されたようです(6)。現在の日本国内においては、北海道立衛生研究所(HIS/Hiphなど)および宮崎大学(HIS/Mzなど)で近交系コットンラットが維持されています。私たちは北海道立衛生研究所および宮崎大学との共同研究により、近交系コットンラットが頭(水頭症)から尾(皮膚の脆弱性による自切)に至るまで全身に様々な病気を持つことを見出し、その表現型を解析してきました。以下にコットンラットで私たちが新規に見出した「併存症」、「希少疾患」モデル動物としての特性について記載いたします。

1)併存症モデル-慢性腎臓病を例に-

 私たちは、雌のHIS/Hiphが加齢性に腎臓の尿細管間質病変を主徴とする慢性腎臓病を呈すること、赤血球産生を促進するホルモンであるエリスロポエチン量が腎臓内で有意に低下し、腎性貧血に至ることを発見しました(7)。別途、雌のHIS/Hiphでは加齢性に骨盤結合が開離し、子宮頸部が肥厚することも見出しました(8)。興味深いことに、骨盤結合が開離した個体は高頻度に子宮蓄膿症を発症し、子宮蓄膿症は慢性腎臓病を増悪させました。骨盤結合開離と慢性腎臓病は卵巣摘出により抑制され、腎臓の病変部ではエストロゲン受容体が発現しました。まとめると、一見無関係と思われる骨盤結合の開離と慢性腎臓病を同時に発症すると、前者は後者の病態を間接的に増悪させ、両者の発症には性ホルモンが関与することが明らかとなりました。

以上のように、コットンラットは複数疾患を併存した際の相互作用やそれらを結びつける因子を解明できる「併存症モデル」となると考えます。

2)希少疾患モデル-下咽頭梨状窩瘻を例に-

 私たちは偶然、HIS/HiphおよびHIS/Mz系コットンラットにおいて、咽頭の梨状陥凹(ヒトだと魚の骨が引っかかりやすい部位)から甲状腺に向かって伸びる管状構造を発見しました(9)。管状構造の詳細は系統間で異なり、HIS/Hiphでは管状構造が甲状腺内部に終わり化膿性甲状腺炎を発症したのに対し、HIS/Mzでは管状構造は甲状腺の外側を走行し炎症反応はみられませんでした。これら管状構造は、ヒトの下咽頭梨状窩瘻(PSF)という稀な先天性疾患に酷似することがわかりました(10)。ここからは発生の話になります。哺乳類では胎児期の梨状陥凹から①胸腺と上皮小体、そして②甲状腺C細胞が発生し甲状腺周囲から胸腔へ移動します。これらは管状構造を形成しますが、移動後消失すべき管状構造が遺残した疾患がPSFであり、頸部膿瘍や化膿性甲状腺炎に至ります。コットンラットをさらに調べると、HIS/HiphはPSFにカルシトニン陽性のC細胞を含むので②に由来し、HIS/MzのPSFにはC細胞が存在しないので①に由来すると示唆されました。

 私が知る限りコットンラットは唯一のPSFモデル動物で、希少疾患であるヒトPSFの由来推定に極めて有用と考えられます。

 結語として、コットンラットはヒト病原体への感受性だけではなく、多臓器に多様な疾患を併存するユニークな特性を持つことが明らかとなりました。今後はコットンラットを利用し、個々の疾患の成因、疾患間の相互作用や根幹を成す因子の解明につながることを期待いたします。

[引用文献]

1. Oka K, Fujioka S, Kawamura Y, et al. Resistance to chemical carcinogenesis induction via a dampened inflammatory response in naked mole-rats. Commun Biol. 2022; 5: 287.

2. Sia SF, Yan LM, Chin AWH, et al. Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature. 2020; 583: 834-838.

3. Curlee JF, Cooper DM. Cotton Rat. In: The Laboratory Rabbit, Guinea Pig, Hamster, and Other Rodents. Cambridge: Academic Press; 2012. pp. 1105-1113.

4. Watts DM, Peters CJ, Newman P, et al. Evaluation of cotton rats as a model for severe acute respiratory syndrome. Vector Borne Zoonotic Dis. 2008; 8: 339-344.

5. Espeseth AS, Yuan M, Citron M, et al. Preclinical immunogenicity and efficacy of a candidate COVID-19 vaccine based on a vesicular stomatitis virus-SARS-CoV-2 chimera. EBioMedicine. 2022; 82: 104203.

6. 今道友則、高橋和明、信永利馬 実験動物の飼育管理と手技 東京ソフトサイエンス社; 1979. pp. 323.  

7. Ichii O, Nakamura T, Irie T, et al. Female cotton rats (Sigmodon hispidus) develop chronic anemia with renal inflammation and cystic changes. Histochem Cell Biol. 2016; 146: 351-362.

8. Ichii O, Nakamura T, Irie T, et al. Close pathological correlations between chronic kidney disease and reproductive organ-associated abnormalities in female cotton rats. Exp Biol Med (Maywood). 2018; 243: 418-427.

9. Nakamura T, Ichii O, Irie T, et al. Cotton rats (Sigmodon hispidus) possess pharyngeal pouch remnants originating from different primordia. Histol Histopathol. 2018; 33: 555-565.

10. Sheng Q, Lv Z, Xu W, Liu J. Differences in the diagnosis and management of pyriform sinus fistula between newborns and children. Sci Rep. 2019; 9: 18497.

コラム

国内承認ワクチンの非臨床試験を垣間見る    〜ワクチン開発と動物実験〜

 核酸ワクチンなどの新規剤型ワクチンが国内で承認され、薬事承認の過程を含む「いわゆる教科書」が書き換えられつつある。その影響か、マスコミ等で臨床試験や承認申請のスケジュールについて採り上げられることはあるいっぽうで、非臨床試験(動物実験)の経過を耳にすることはほとんどない。非臨床試験への社会的な関心度が低いとみなされているのかどうかはともかく、「非臨床試験の内容についても情報発信されている」ことを、ワクチンを例に紹介したい。

 独立行政法人医薬品医療機器総合機構(PMDA)は、医療用医薬品情報を公表している 1)。この情報検索サイトで「ワクチン」の「審査報告書等」について文書検索すると、84件のワクチンが表示された (2022年8月末)。内訳は、インフルエンザ関連が28件、新型コロナ関連、麻しん関連、風しん関連が各7件、肺炎球菌が5件、百日せき関連、ジフテリア関連、破傷風関連、ポリオ関連、パピローマが各4件、ヘモフィルスb型と日本脳炎が各3件、水痘、おたふくかぜ、狂犬病、A型肝炎、B型肝炎、ロタウイルスが各2件、黄熱、結核、痘そう、帯状疱疹、髄膜炎菌が各1件とある (混合ワクチンは複数件にカウント)。同様に、一般社団法人日本医薬情報センター(JAPIC)では、1998年以降の医療用医薬品「日本の新薬」について検索可能である2)

 PMDAのサイトでは「審査報告書」に加え「申請資料概要」も公表されていることが多く (一部内容に未公表あり)、製造販売業者が提出した資料の概要、すなわち、開発の経緯や、承認申請までに実施した非臨床試験及び臨床試験の内容を垣間見ることができる。非臨床試験の内容については日付や実施機関などを除いて「審査報告書」内で開示されており、試験の目的のほか、げっ歯類や霊長類の使用についても具体的に記載されている。あるワクチンの非臨床試験結果には、「若齢及び高齢のマウス、ラット、ハムスター及びNHP(non-human primate、この場合はアカゲザル)において、高レベルの結合抗体及び中和抗体を誘導し、(以下略)」とある。また、「効力を裏付ける試験 (免疫原性試験、攻撃試験)」、「安全性薬理試験 (反復投与毒性試験、生殖発生毒性試験)」や「薬物動態試験 (生体内分布評価試験)」が行われたことのほか、このワクチンが臨床で6か月以上継続使用されないことから「がん原性試験」を実施していないことが記されている。

 日米EU医薬品規制調和国際会議(ICH)での合意に基づき、「医薬品の臨床試験のための非臨床試験の実施時期についてのガイドライン」が2010年に改正され、「医薬品の臨床試験及び製造販売承認申請のための非臨床安全性試験実施についてのガイダンス」がまとめられて現在に至っている (ICH-M3{R2})3)。この改正の主な目的は、承認審査資料の国際的なハーモナイゼーションを推進することにあり、「動物実験の3Rsの原則」に従うこと、および「早期探索的臨床試験のための非臨床試験」という概念を導入することなどにあり、これ以降、毒性試験や薬理試験など12の試験項目の安全性(Safety)についてICHガイドラインが各々整備されてきている (ICH-S1~S12)。

 臨床第Ⅰ相試験の初期に実施される「早期探索的臨床試験」に応じて、ヒト初回投与試験までに実施すべきマイクロドーズ試験や単回投与毒性などの非臨床試験が、げっ歯類および非げっ歯類を用いて実施される。すなわち「早期探索的臨床試験の開始時までに実施される非臨床試験は一部にすぎず、実施予定の臨床試験の時期や期間に応じて非臨床試験がデザインされる」のが一般的である。

 この分野の専門家ではない著者の私見ではあるが、「ほとんどの動物実験(試験)がヒト臨床に先だって実施されるもの」という、現実からやや乖離した先入観が社会の根底にあるように感じている。時に動物実験(試験)は「非臨床試験(前臨床試験)」などと記載されることもあり、研究者による社会に向けた正確な情報発信という点で誤解を生み易い表現には都度解説する必要があると自戒を込めて考えている。

【参考アドレス】

1. 独立行政法人医薬品医療機器総合機構(PMDA) 「医療用医薬品 情報検索」 

2. 一般社団法人日本医薬情報センター(JAPIC) 「医薬品情報データベース (iyakuSearch)」

3. 独立行政法人医薬品医療機器総合機構(PMDA) 「ICH 医薬品規制調和国際会議 ガイドライン 」

コラム

マウスやラットの技術トレーニングで使用される代替法教材

 シミュレーター(模型)や映像教材は、様々な教育現場における技術トレーニングに活用されています。特に医療分野や獣医療分野では様々な臨床技術に関する教材が開発されており、医師や獣医師の育成に使用されてきました。マウスやラットなどの小型齧歯類を対象とした教材についても、近年国内の複数のメーカーで開発が進められており、各施設の教育現場で浸透してきています。これらの代替法教材は初学者が技術を習得する際に、技術のイメージや手順を覚える際の助けになります。生体を使ったトレーニングを行う前にシミュレーターや映像教材を用いて事前学習を行うことにより、効率良く技術を習得することができます。さらに動物実験技術の教育現場で代替法教材を導入することは、実験動物福祉(3Rs: Replacement, Reduction, Refinement)に配慮した教育の実施に貢献します。このコラムでは2022年時点で、国内で入手可能な小型齧歯類の技術トレーニング用代替法教材を紹介します。

1. シミュレーター(模型)

マウスシミュレーター: Mimicky® Mouse

 Mimicky® Mouseはマウスの質感やサイズ、重量などを精巧に再現したシミュレーターです。初心者を対象としたシミュレーターであり、動物の抑え方や投与の手順などを確認する際に使用されます。尾の部分には模擬血管が埋め込まれており、尾静脈投与の練習が可能です。尾は本体と取り外しできるようになっており、尾の部分だけ別途購入し付け替えて使用することができます。マウス個体のシミュレーターは世界的に珍しく、その再現性の高さから海外からの評価も高いようです。Mimicky® Mouseの使用例についてはここから動画で確認できます。

また、同社よりサルの静脈採血・投与のシミュレーター(Mimicky® Vessel)も販売されています。

マウスの尾静脈投与・採血のシミュレーター:マウス尾静脈シミュレーター

 尾静脈からの投与・採血に特化したシミュレーターで、尾の部分のみの形で日本クレア株式会社から販売されており、ここから使用方法の動画を視聴できます。シリコン製の尾の内部に尾静脈のチューブが2本埋め込まれており、マウスの尾静脈が精巧に再現されています。保定器に接続し、インクなどの模擬血液をチューブ内に充填後、採血・投与のトレーニングを行います。実際に生体で投与・採血を行う時と比べて難易度はやや低く設定されており、初心者が手順を覚える上で調度よい難易度になっています。また材質の特性から耐久性が高く、繰り返し使用することができます。

ラットシミュレーター:NATSUME RAT

 ラットの基本手技を訓練するための初心者用シミュレーターの一つです。訓練可能な技術は保定、経口投与、尾静脈内投与・採血、気管挿管です。NATSUME RATは比較的古くから使用されてきた国産シミュレーターですが、近年リニューアルが行われ、材質が改良されました。ラットシミュレーターについては国内外で複数のものが存在します。実物のラットと各ラットシミュレーターの形態的な比較を調査した論文で、NATSUME RATは他のシミュレーターと比較し、頭部の形状や血管の位置、尾の構造をはじめとした各部位において形態の再現度が高かったと報告されています(1)。

株式会社夏目製作所 HP

2. 映像教材

 実際に、動画による視覚的イメージが、技術の習得に大きく貢献することが、アメリカの獣医学生を対象とした調査で明らかとなっています。犬の外科手術の際に、教員の講義内容(声)、シュミュレーターでの練習内容、自らまとめたノート、動画教材の視覚的イメージなどの学習内容うち、記憶をどこからリコールしたかを調査したところ、動画の視覚的イメージと回答した学生が圧倒的に多かったと報告されています(2)。

 映像教材はビデオカメラがあれば簡単に作成することが可能であり、各施設においてオリジナルの動画が作成・活用されています。また各種関連団体でマウスやラットの基本手技のDVDが販売されています。

 映像教材と上述のシミュレーターと組み合わせることによって学習効果はさらに高まります。

・ビデオジャーナル:JoVE

JoVE(Journal of Visualized Experiments)は動物実験技術に限らず様々な分野の実験技術をマニュアル付きで多数公開している査読審査式のビデオジャーナルです。各実験技術の動画が専門家の解説付きでまとめられており、新しく実験系を立ち上げる際などに役立ちます。

 JoVEに掲載されている実験動画の例:A Protocol for Housing Mice in an Enriched Environment

解剖シミュレーションアプリ:3D Rat Anatomy

 研究目的で解剖を行う際には、速やかかつ適切に臓器を採材することが要求されますが、そのためには各臓器の位置関係を理解しておく必要があります。3D Anatomyシリーズは3Dアプリの特性を利用することで、各臓器の立体的な位置関係を学習するのに有用な教材です。このシリーズでは犬や牛、鳥類をはじめとした様々な動物種のアプリがラインナップされていますが、小型齧歯類ではラットのアプリが販売されています。アプリはPC(WindowsおよびMacOS)、iPad、iPhone、Androidスマートフォンなど各種端末にダウンロードすることができます。3D Rat Anatomyは画面上の動物の各部位を拡大縮小、回転することができ、各器官の位置関係を容易に可視化することができます。また、骨、筋肉、内臓の透過度を調整したりすることで観察したい部位を強調することができます。なお3D Rat Anatomyは海外製品のため、器官名の表記がすべて英語となります。

biosphera HPにアプリのデモ動画が掲載されています。

[参考文献]

1. Corte GM, Humpenöder M, Pfützner M, Merle R, Wiegard M, Hohlbaum K, Richardson K, Thöne-Reineke C, Plendl J. Anatomical Evaluation of Rat and Mouse Simulators for Laboratory Animal Science Courses. Animals (Basel). 2021, 11(12):3432. 

2. Langebæk R, Tanggaard L, Berendt M. Veterinary Students’ Recollection Methods for Surgical Procedures: A Qualitative Study. J Vet Med Educ. 2016, 43(1):64-70.

コラム

情報発信のあり方を考える

 科学研究の継続や進展のためには一般市民の支持が必要不可欠です。毎年、Gallup社のアメリカ人の”実験動物を使った医学研究”に対する世論調査に注目しておりますが、2001年〜2019年にかけて徐々に低下してきました (容認率、65% ➝ 50%)。昨年はコロナの影響もあり56%と上昇しましたが、2021年に再び50%に低下しました。日本がお手本としてきた米国の動物福祉政策を以ってしても、容認率の低下は避けられないようです。今回は、関連する話題として、一昨年のJALAS総会にて、塩谷恭子先生が企画された英国Understanding Animal Research (UAR)の活動の一部を紹介させて頂きます。

 UARは、代表のWendy Jarrett氏と8名の職員で運営されるNPO団体で、動物実験に関する情報の透明性を高め、英国民から理解・支持を得ることを目的としている。現在、英国の124の主要な研究機関 (公的研究機関、大学、学会、製薬会社、飼育関連機器会社等)がUARに加盟し、加盟施設は下記の4つの協定を結び、UARは加盟施設への指導・助言を行う。

  1. 実験に動物を使用する場合、いつ、どのように、なぜを明確にする。

  2. メディアや一般市民に対し動物実験についてより積極的に情報を公開する。

   (HPに情報を掲載し、問い合わせや質問には確実に回答すること等)

  3. 自ら進んで動物実験について国民が知る機会を増やす 

  (出前授業や施設内のバーチャルツアー動画を公開する等)。

  4. 年に一度、UARに活動内容を報告し、加盟施設間で情報(成功/失敗体験)を共有する。

 加盟施設のうち、マスコミ向けに動物実験の情報を積極的に提供している施設は61箇所、外部の訪問客を受け入れた施設は57箇所、学校に演者を派遣あるいは施設に学生を受け入れた施設は56箇所、マスコミの撮影を受け入れた施設は13箇所である(2019年)。情報公開において先駆的な試みを行った施設には、12月に開催される情報公開表彰式において表彰される。

 UARは他にも様々な活動を行っている。Webサイトには様々な情報や統計データ、国内外の実験動物を用いた研究に関するニュースが提供されている。様々な動物実験のプロトコールについて、目的や利点だけでなく苦痛についても紹介され、また、学生、ジャーナリスト、一般人向けに動物実験の情報を提供するウェブサイトanimalresearch. infoや、複数の動物施設のバーチャルツアーが体験できるlabanimaltour.orgも作成している。twitter等ソーシャルメディアも積極的に用い、多方面に情報提供を行っている(COVID-19のワクチンの開発過程における動物実験を行う意義について説明した図は、英国の多くのメディアでシェアされた)。

 特に印象的な試みは、11〜18歳を対象に、UARがアンバサダーを学校に派遣し、ワークショップにて学生と”対話”することである若年層ほど動物実験に抵抗を持っているので、将来を担う若者に正しい情報を隠すこと無く提供し、自発的に理解を深めてもらうことが目的である。人は一方的に事実を投げかけられても正しい判断を下すことができないため、学生との共通点や見解の一致点を探すことができる”対話”形式を用いている。年間1万人のペースで、すでに10万人以上の学生と対話を行ってきた。アンバサダーは動物実験の専門家(研究者、医療関係者、獣医師等)や動物飼育スタッフからなる167名のボランティアである。彼らは、効果的な対話法やプレゼン法の研修を受けた後に学校に派遣される。UARのHPには、学校向けコンテンツの一部が公開されている。学生アンケートの結果、アンバサダーのうち管理獣医師の話が最も信用できるとのことである。また、学生や先生方に動物実験施設見学の機会も設けている。

 これらの試みによって、動物実験に関して英国民が入手できる情報は飛躍的に増え、事実を公表しても悪い影響や反発は起きていないこと、施設のHPで情報が豊富に入手できるため情報公開請求件数も減少し、動物実験に関するマスコミのネガティブな報道が大幅に減少したようだ。

 本稿ではUARの試みの一部を紹介しましたが、動物実験の社会的理解を得るための情報発信のあり方について、議論のきっかけになっていただければ幸いです。

コラム

ちゃんと向き合いたい、
実験動物のこと。

実験動物というとどんなイメージがあるでしょうか。
動物を実験に活用することへの抵抗感をお持ちの方もいらっしゃるかもしれません。
しかし、実験動物に携わる関係者の間では実験動物を科学的合理性だけでなく、
動物福祉の観点からも向き合い、飼育環境の改善、実験方法や規制の見直しといった工夫を
日々行っております。

当団体では、そういった日々進化する実験動物に関する情報を
様々なコンテンツを通じて発信しております。
当サイトが、実験動物に関心のある方々の理解を促進し、
よりよい動物と人間の共存関係を実現する一助となれば幸いに存じます。

学会案内を見る

About Laboratory Animals実験動物とは

主な実験動物の種類、実験動物の飼育環境などについて説明します。

詳しくはこちら

Mechanism動物実験のしくみ

動物実験がどのように活かされるのか、また、実験環境を取り巻く規制などについて説明します。

詳しくはこちら

JALAM会員からの寄稿

今野 兼次郎

コンノ ケンジロウ

国立循環器病研究センター研究所

寄稿文

温故知新、前島賞」

Profile Picture

安居院 高志

アグイ タカシ

北海道大学名誉教授

YouTubeチャンネルの紹介

前JALAM会長の安居院高志先生(北大名誉教授)が、YouTubeチャンネル「ブラ野食」を開設されました。本チャンネルでは、自然散策や山菜類の魅力を発信されております。
YouTubeで「ブラ野食」を検索いただき、ご興味のある方はぜひご覧ください。
https://www.youtube.com/channel/UCmEoriPMtTlbujnPBQnY_9w

Profile Picture

特集

米国獣医学会(AVMA)動物の安楽死指針2020年版出版記念 -紹介動画-

 日本実験動物医学専門医協会は、AVMAと翻訳契約を取り交わし、「米国獣医学会 動物の安楽死指針(安楽死ガイドライン):2020年」版の翻訳本(翻訳者代表 黒澤努、鈴木真)を出版しました。本ガイドラインは、国際的に容認される具体的な安楽死法を示しており、主に獣医師を対象に記載されています。専門的ではありますが、最新の情報を網羅しており、獣医師以外の動物にかかわる方々の指針としても重要な文献です。(原文はこちら

 2013年度版から改訂された2020年版では、第3章にS1コンパニオンアニマル、S2実験動物、S3家畜、S4馬、S5鳥類、S6魚類と水生無脊椎動物、S7野生動物と7つの動物に区分されて記載されています。

 日本実験動物医学会および日本実験動物医学専門医協会は、本指針が広く周知されることで、わが国の動物福祉がより向上することを期待します。また、実験動物ならびにその他の動物の人道的な取り扱いを広めるための啓蒙活動を継続していきます。

米国獣医学会(AVMA)動物の安楽死指針(安楽死ガイドライン)2020年版の紹介

https://vimeo.com/719001280

炭酸ガスを用いた安楽死

https://vimeo.com/710990217

Compassion Fatigue(共感疲労)

https://vimeo.com/710990398
https://vimeo.com/720976209

Compassion Fatigueについて、さらに知りたい方はこちらもご覧ください。

安楽死にまつわる諸問題 part2

動物実験従事者におけるCompassion Fatigueの分類(ProQOLを用いた分類)

特集

実験動物のリホーミング

実験動物の飼養及び保管並びに苦痛の軽減に関する基準では、第4章実験等の実施上の配慮の項において、「実験に供する期間をできるだけ短くする等実験終了の時期に配慮すること」と記されています。そして、実験動物の飼養及び保管並びに苦痛の軽減に関する基準の解説によると、実験計画の立案においては、「実験や術後観察の終了の時期(人道的エンドポイント)等について、具体的な計画を立案する必要がある。(p. 114)」と解説されています。また、人道的エンドポイントとは、「実験動物を激しい苦痛から解放するために実験を終了あるいは途中で中止する時期(すなわち安楽死処置を施す時期)を意味する。(p. 142)」と解説されています。こうしたことから、動物実験の終了とは、主として安楽死処置を施すこととも捉えられます。

一方で、安楽死処置については、上述の通り実験動物を激しい苦痛から解放するための措置である反面、「安全性に加え、安楽死処置実施者が感じる精神的不安、不快感、あるいは苦痛に配慮し、科学的研究の目的を損なわない限り、心理的負担の少ない安全な方法を選択すべきである。(p. 159)」とも解説されており、実施者にとっては精神的不安、不快感、あるいは苦痛といった心理的負担を伴う措置であるということも理解されています。

このような安楽死における実施者の心理的負担に関しては、「安楽死にまつわる諸問題」についてのコラムですでに紹介されていますが、動物実験が遂行される中で、必ずしも動物は苦痛を被って実験を終えるものでもありません。こうした動物に対してはどのようにエンドポイントを考えたらよいでしょうか。これらの動物にも安楽死処置を施すのでしょうか。その心理的負担は苦痛から解放するための安楽死処置の場合よりも大きいものになるかもしれません。他に選択肢はないのでしょうか。

最近では、酪農学園大学から引き取られた実験犬「しょうゆ」の里親譲渡の話題もあり、こちらも「実験動物の里親制度」についてのコラムですでに紹介されていますが、国内でも少なからず実験動物を安楽死せずに余生を送らせるリホーミングの活動が行われています。リホーミングは動物の福祉を考えること、また実施者の心理的負担を軽減させるという点でとても有意義なことではありますが、同時に、実験動物が社会の目に触れ、動物実験に関心をもつきっかけとなるということは、社会的に適正な動物実験を考える上でもとても重要なことでもあるのではないでしょうか。

ここでは実験動物のエンドポイントとして安楽死に代わる選択肢としての可能性があるリホーミングについて、実際にリホーミングをされた方からの寄稿を交えて、文献を紹介します。多くの方が実験動物に関心を持ち、適正な動物実験を考えるきっかけとなればと思います。

文献紹介:リホームされた実験用ビーグルは、日常的な場面でどのような行動をとるのか?

製薬企業から引き取られた実験犬の、その後に関するドイツでの調査です。

文献紹介:英国で行われた実験動物のリホーミング実践に関する調査

実験動物のリホーミングに関する英国での実態調査です。

文献紹介:フィンランドにおける実験用ビーグルの最初のリホーミング:社会化訓練からフォローアップまでの完全なプロセス

フィンランドで行われた実験用ビーグルの最初のリホーミングと社会化プログラムの紹介です。

特集

コットンラット〜全身に病気を併存する不思議な実験動物〜

中村鉄平 獣医師、博士(獣医学)、北海道大学大学院獣医学研究院実験動物学教室 准教授

 皆さまの多くは実験動物と聞くとマウスやラットが頭に浮かぶのではないかと拝察いたします。実際には実験動物は多岐にわたり、私たちは目的に最も適う特性を持つ動物種を選択いたします。実験動物の特性に関する説明は成書に譲りますが、実験動物の新規特性は次々に明らかとなっています。近年では、ハダカデバネズミが老化やがんに抵抗性を持つこと(1)やハムスターがSARS-CoV-2に感受性が高いこと(2)はご記憶にある方もいらっしゃるのではないでしょうか。このコラムでは、ユニークな特性を持つコットンラットという実験動物について紹介させていただきます。

 コットンラット(英名cotton rat, 学名Sigmodon hispidus)は南北アメリカ大陸に分布するキヌゲネズミ科に属する齧歯類で、ラットの名がついていますがハムスターと近縁です。成体のコットンラットは頭胴長125-200mm、尾長75-166mm、体重70-310gとマウスとラットの中間の大きさです。雑食で、草の生い茂った草原や沼地を好んで生息します(3)。コットンラットの実験動物としての歴史は古く、1930年代にポリオウイルス感染によりヒトに類似する神経麻痺症状を発症することが見出されました。その他にも、コロナウイルスを含む様々なヒトの呼吸器感染症ウイルスへの感受性を持つことが知られ、SARS(4)やCOVID-19(5)研究にも使われています。我が国には1951年に輸入され、主に東大伝染病研究所で維持され、その後多くの研究機関に分与されたようです(6)。現在の日本国内においては、北海道立衛生研究所(HIS/Hiphなど)および宮崎大学(HIS/Mzなど)で近交系コットンラットが維持されています。私たちは北海道立衛生研究所および宮崎大学との共同研究により、近交系コットンラットが頭(水頭症)から尾(皮膚の脆弱性による自切)に至るまで全身に様々な病気を持つことを見出し、その表現型を解析してきました。以下にコットンラットで私たちが新規に見出した「併存症」、「希少疾患」モデル動物としての特性について記載いたします。

1)併存症モデル-慢性腎臓病を例に-

 私たちは、雌のHIS/Hiphが加齢性に腎臓の尿細管間質病変を主徴とする慢性腎臓病を呈すること、赤血球産生を促進するホルモンであるエリスロポエチン量が腎臓内で有意に低下し、腎性貧血に至ることを発見しました(7)。別途、雌のHIS/Hiphでは加齢性に骨盤結合が開離し、子宮頸部が肥厚することも見出しました(8)。興味深いことに、骨盤結合が開離した個体は高頻度に子宮蓄膿症を発症し、子宮蓄膿症は慢性腎臓病を増悪させました。骨盤結合開離と慢性腎臓病は卵巣摘出により抑制され、腎臓の病変部ではエストロゲン受容体が発現しました。まとめると、一見無関係と思われる骨盤結合の開離と慢性腎臓病を同時に発症すると、前者は後者の病態を間接的に増悪させ、両者の発症には性ホルモンが関与することが明らかとなりました。

以上のように、コットンラットは複数疾患を併存した際の相互作用やそれらを結びつける因子を解明できる「併存症モデル」となると考えます。

2)希少疾患モデル-下咽頭梨状窩瘻を例に-

 私たちは偶然、HIS/HiphおよびHIS/Mz系コットンラットにおいて、咽頭の梨状陥凹(ヒトだと魚の骨が引っかかりやすい部位)から甲状腺に向かって伸びる管状構造を発見しました(9)。管状構造の詳細は系統間で異なり、HIS/Hiphでは管状構造が甲状腺内部に終わり化膿性甲状腺炎を発症したのに対し、HIS/Mzでは管状構造は甲状腺の外側を走行し炎症反応はみられませんでした。これら管状構造は、ヒトの下咽頭梨状窩瘻(PSF)という稀な先天性疾患に酷似することがわかりました(10)。ここからは発生の話になります。哺乳類では胎児期の梨状陥凹から①胸腺と上皮小体、そして②甲状腺C細胞が発生し甲状腺周囲から胸腔へ移動します。これらは管状構造を形成しますが、移動後消失すべき管状構造が遺残した疾患がPSFであり、頸部膿瘍や化膿性甲状腺炎に至ります。コットンラットをさらに調べると、HIS/HiphはPSFにカルシトニン陽性のC細胞を含むので②に由来し、HIS/MzのPSFにはC細胞が存在しないので①に由来すると示唆されました。

 私が知る限りコットンラットは唯一のPSFモデル動物で、希少疾患であるヒトPSFの由来推定に極めて有用と考えられます。

 結語として、コットンラットはヒト病原体への感受性だけではなく、多臓器に多様な疾患を併存するユニークな特性を持つことが明らかとなりました。今後はコットンラットを利用し、個々の疾患の成因、疾患間の相互作用や根幹を成す因子の解明につながることを期待いたします。

[引用文献]

1. Oka K, Fujioka S, Kawamura Y, et al. Resistance to chemical carcinogenesis induction via a dampened inflammatory response in naked mole-rats. Commun Biol. 2022; 5: 287.

2. Sia SF, Yan LM, Chin AWH, et al. Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature. 2020; 583: 834-838.

3. Curlee JF, Cooper DM. Cotton Rat. In: The Laboratory Rabbit, Guinea Pig, Hamster, and Other Rodents. Cambridge: Academic Press; 2012. pp. 1105-1113.

4. Watts DM, Peters CJ, Newman P, et al. Evaluation of cotton rats as a model for severe acute respiratory syndrome. Vector Borne Zoonotic Dis. 2008; 8: 339-344.

5. Espeseth AS, Yuan M, Citron M, et al. Preclinical immunogenicity and efficacy of a candidate COVID-19 vaccine based on a vesicular stomatitis virus-SARS-CoV-2 chimera. EBioMedicine. 2022; 82: 104203.

6. 今道友則、高橋和明、信永利馬 実験動物の飼育管理と手技 東京ソフトサイエンス社; 1979. pp. 323.  

7. Ichii O, Nakamura T, Irie T, et al. Female cotton rats (Sigmodon hispidus) develop chronic anemia with renal inflammation and cystic changes. Histochem Cell Biol. 2016; 146: 351-362.

8. Ichii O, Nakamura T, Irie T, et al. Close pathological correlations between chronic kidney disease and reproductive organ-associated abnormalities in female cotton rats. Exp Biol Med (Maywood). 2018; 243: 418-427.

9. Nakamura T, Ichii O, Irie T, et al. Cotton rats (Sigmodon hispidus) possess pharyngeal pouch remnants originating from different primordia. Histol Histopathol. 2018; 33: 555-565.

10. Sheng Q, Lv Z, Xu W, Liu J. Differences in the diagnosis and management of pyriform sinus fistula between newborns and children. Sci Rep. 2019; 9: 18497.

コラム

国内承認ワクチンの非臨床試験を垣間見る    〜ワクチン開発と動物実験〜

 核酸ワクチンなどの新規剤型ワクチンが国内で承認され、薬事承認の過程を含む「いわゆる教科書」が書き換えられつつある。その影響か、マスコミ等で臨床試験や承認申請のスケジュールについて採り上げられることはあるいっぽうで、非臨床試験(動物実験)の経過を耳にすることはほとんどない。非臨床試験への社会的な関心度が低いとみなされているのかどうかはともかく、「非臨床試験の内容についても情報発信されている」ことを、ワクチンを例に紹介したい。

 独立行政法人医薬品医療機器総合機構(PMDA)は、医療用医薬品情報を公表している 1)。この情報検索サイトで「ワクチン」の「審査報告書等」について文書検索すると、84件のワクチンが表示された (2022年8月末)。内訳は、インフルエンザ関連が28件、新型コロナ関連、麻しん関連、風しん関連が各7件、肺炎球菌が5件、百日せき関連、ジフテリア関連、破傷風関連、ポリオ関連、パピローマが各4件、ヘモフィルスb型と日本脳炎が各3件、水痘、おたふくかぜ、狂犬病、A型肝炎、B型肝炎、ロタウイルスが各2件、黄熱、結核、痘そう、帯状疱疹、髄膜炎菌が各1件とある (混合ワクチンは複数件にカウント)。同様に、一般社団法人日本医薬情報センター(JAPIC)では、1998年以降の医療用医薬品「日本の新薬」について検索可能である2)

 PMDAのサイトでは「審査報告書」に加え「申請資料概要」も公表されていることが多く (一部内容に未公表あり)、製造販売業者が提出した資料の概要、すなわち、開発の経緯や、承認申請までに実施した非臨床試験及び臨床試験の内容を垣間見ることができる。非臨床試験の内容については日付や実施機関などを除いて「審査報告書」内で開示されており、試験の目的のほか、げっ歯類や霊長類の使用についても具体的に記載されている。あるワクチンの非臨床試験結果には、「若齢及び高齢のマウス、ラット、ハムスター及びNHP(non-human primate、この場合はアカゲザル)において、高レベルの結合抗体及び中和抗体を誘導し、(以下略)」とある。また、「効力を裏付ける試験 (免疫原性試験、攻撃試験)」、「安全性薬理試験 (反復投与毒性試験、生殖発生毒性試験)」や「薬物動態試験 (生体内分布評価試験)」が行われたことのほか、このワクチンが臨床で6か月以上継続使用されないことから「がん原性試験」を実施していないことが記されている。

 日米EU医薬品規制調和国際会議(ICH)での合意に基づき、「医薬品の臨床試験のための非臨床試験の実施時期についてのガイドライン」が2010年に改正され、「医薬品の臨床試験及び製造販売承認申請のための非臨床安全性試験実施についてのガイダンス」がまとめられて現在に至っている (ICH-M3{R2})3)。この改正の主な目的は、承認審査資料の国際的なハーモナイゼーションを推進することにあり、「動物実験の3Rsの原則」に従うこと、および「早期探索的臨床試験のための非臨床試験」という概念を導入することなどにあり、これ以降、毒性試験や薬理試験など12の試験項目の安全性(Safety)についてICHガイドラインが各々整備されてきている (ICH-S1~S12)。

 臨床第Ⅰ相試験の初期に実施される「早期探索的臨床試験」に応じて、ヒト初回投与試験までに実施すべきマイクロドーズ試験や単回投与毒性などの非臨床試験が、げっ歯類および非げっ歯類を用いて実施される。すなわち「早期探索的臨床試験の開始時までに実施される非臨床試験は一部にすぎず、実施予定の臨床試験の時期や期間に応じて非臨床試験がデザインされる」のが一般的である。

 この分野の専門家ではない著者の私見ではあるが、「ほとんどの動物実験(試験)がヒト臨床に先だって実施されるもの」という、現実からやや乖離した先入観が社会の根底にあるように感じている。時に動物実験(試験)は「非臨床試験(前臨床試験)」などと記載されることもあり、研究者による社会に向けた正確な情報発信という点で誤解を生み易い表現には都度解説する必要があると自戒を込めて考えている。

【参考アドレス】

1. 独立行政法人医薬品医療機器総合機構(PMDA) 「医療用医薬品 情報検索」 

2. 一般社団法人日本医薬情報センター(JAPIC) 「医薬品情報データベース (iyakuSearch)」

3. 独立行政法人医薬品医療機器総合機構(PMDA) 「ICH 医薬品規制調和国際会議 ガイドライン 」

コラム

マウスやラットの技術トレーニングで使用される代替法教材

 シミュレーター(模型)や映像教材は、様々な教育現場における技術トレーニングに活用されています。特に医療分野や獣医療分野では様々な臨床技術に関する教材が開発されており、医師や獣医師の育成に使用されてきました。マウスやラットなどの小型齧歯類を対象とした教材についても、近年国内の複数のメーカーで開発が進められており、各施設の教育現場で浸透してきています。これらの代替法教材は初学者が技術を習得する際に、技術のイメージや手順を覚える際の助けになります。生体を使ったトレーニングを行う前にシミュレーターや映像教材を用いて事前学習を行うことにより、効率良く技術を習得することができます。さらに動物実験技術の教育現場で代替法教材を導入することは、実験動物福祉(3Rs: Replacement, Reduction, Refinement)に配慮した教育の実施に貢献します。このコラムでは2022年時点で、国内で入手可能な小型齧歯類の技術トレーニング用代替法教材を紹介します。

1. シミュレーター(模型)

マウスシミュレーター: Mimicky® Mouse

 Mimicky® Mouseはマウスの質感やサイズ、重量などを精巧に再現したシミュレーターです。初心者を対象としたシミュレーターであり、動物の抑え方や投与の手順などを確認する際に使用されます。尾の部分には模擬血管が埋め込まれており、尾静脈投与の練習が可能です。尾は本体と取り外しできるようになっており、尾の部分だけ別途購入し付け替えて使用することができます。マウス個体のシミュレーターは世界的に珍しく、その再現性の高さから海外からの評価も高いようです。Mimicky® Mouseの使用例についてはここから動画で確認できます。

また、同社よりサルの静脈採血・投与のシミュレーター(Mimicky® Vessel)も販売されています。

マウスの尾静脈投与・採血のシミュレーター:マウス尾静脈シミュレーター

 尾静脈からの投与・採血に特化したシミュレーターで、尾の部分のみの形で日本クレア株式会社から販売されており、ここから使用方法の動画を視聴できます。シリコン製の尾の内部に尾静脈のチューブが2本埋め込まれており、マウスの尾静脈が精巧に再現されています。保定器に接続し、インクなどの模擬血液をチューブ内に充填後、採血・投与のトレーニングを行います。実際に生体で投与・採血を行う時と比べて難易度はやや低く設定されており、初心者が手順を覚える上で調度よい難易度になっています。また材質の特性から耐久性が高く、繰り返し使用することができます。

ラットシミュレーター:NATSUME RAT

 ラットの基本手技を訓練するための初心者用シミュレーターの一つです。訓練可能な技術は保定、経口投与、尾静脈内投与・採血、気管挿管です。NATSUME RATは比較的古くから使用されてきた国産シミュレーターですが、近年リニューアルが行われ、材質が改良されました。ラットシミュレーターについては国内外で複数のものが存在します。実物のラットと各ラットシミュレーターの形態的な比較を調査した論文で、NATSUME RATは他のシミュレーターと比較し、頭部の形状や血管の位置、尾の構造をはじめとした各部位において形態の再現度が高かったと報告されています(1)。

株式会社夏目製作所 HP

2. 映像教材

 実際に、動画による視覚的イメージが、技術の習得に大きく貢献することが、アメリカの獣医学生を対象とした調査で明らかとなっています。犬の外科手術の際に、教員の講義内容(声)、シュミュレーターでの練習内容、自らまとめたノート、動画教材の視覚的イメージなどの学習内容うち、記憶をどこからリコールしたかを調査したところ、動画の視覚的イメージと回答した学生が圧倒的に多かったと報告されています(2)。

 映像教材はビデオカメラがあれば簡単に作成することが可能であり、各施設においてオリジナルの動画が作成・活用されています。また各種関連団体でマウスやラットの基本手技のDVDが販売されています。

 映像教材と上述のシミュレーターと組み合わせることによって学習効果はさらに高まります。

・ビデオジャーナル:JoVE

JoVE(Journal of Visualized Experiments)は動物実験技術に限らず様々な分野の実験技術をマニュアル付きで多数公開している査読審査式のビデオジャーナルです。各実験技術の動画が専門家の解説付きでまとめられており、新しく実験系を立ち上げる際などに役立ちます。

 JoVEに掲載されている実験動画の例:A Protocol for Housing Mice in an Enriched Environment

解剖シミュレーションアプリ:3D Rat Anatomy

 研究目的で解剖を行う際には、速やかかつ適切に臓器を採材することが要求されますが、そのためには各臓器の位置関係を理解しておく必要があります。3D Anatomyシリーズは3Dアプリの特性を利用することで、各臓器の立体的な位置関係を学習するのに有用な教材です。このシリーズでは犬や牛、鳥類をはじめとした様々な動物種のアプリがラインナップされていますが、小型齧歯類ではラットのアプリが販売されています。アプリはPC(WindowsおよびMacOS)、iPad、iPhone、Androidスマートフォンなど各種端末にダウンロードすることができます。3D Rat Anatomyは画面上の動物の各部位を拡大縮小、回転することができ、各器官の位置関係を容易に可視化することができます。また、骨、筋肉、内臓の透過度を調整したりすることで観察したい部位を強調することができます。なお3D Rat Anatomyは海外製品のため、器官名の表記がすべて英語となります。

biosphera HPにアプリのデモ動画が掲載されています。

[参考文献]

1. Corte GM, Humpenöder M, Pfützner M, Merle R, Wiegard M, Hohlbaum K, Richardson K, Thöne-Reineke C, Plendl J. Anatomical Evaluation of Rat and Mouse Simulators for Laboratory Animal Science Courses. Animals (Basel). 2021, 11(12):3432. 

2. Langebæk R, Tanggaard L, Berendt M. Veterinary Students’ Recollection Methods for Surgical Procedures: A Qualitative Study. J Vet Med Educ. 2016, 43(1):64-70.

コラム

情報発信のあり方を考える

 科学研究の継続や進展のためには一般市民の支持が必要不可欠です。毎年、Gallup社のアメリカ人の”実験動物を使った医学研究”に対する世論調査に注目しておりますが、2001年〜2019年にかけて徐々に低下してきました (容認率、65% ➝ 50%)。昨年はコロナの影響もあり56%と上昇しましたが、2021年に再び50%に低下しました。日本がお手本としてきた米国の動物福祉政策を以ってしても、容認率の低下は避けられないようです。今回は、関連する話題として、一昨年のJALAS総会にて、塩谷恭子先生が企画された英国Understanding Animal Research (UAR)の活動の一部を紹介させて頂きます。

 UARは、代表のWendy Jarrett氏と8名の職員で運営されるNPO団体で、動物実験に関する情報の透明性を高め、英国民から理解・支持を得ることを目的としている。現在、英国の124の主要な研究機関 (公的研究機関、大学、学会、製薬会社、飼育関連機器会社等)がUARに加盟し、加盟施設は下記の4つの協定を結び、UARは加盟施設への指導・助言を行う。

  1. 実験に動物を使用する場合、いつ、どのように、なぜを明確にする。

  2. メディアや一般市民に対し動物実験についてより積極的に情報を公開する。

   (HPに情報を掲載し、問い合わせや質問には確実に回答すること等)

  3. 自ら進んで動物実験について国民が知る機会を増やす 

  (出前授業や施設内のバーチャルツアー動画を公開する等)。

  4. 年に一度、UARに活動内容を報告し、加盟施設間で情報(成功/失敗体験)を共有する。

 加盟施設のうち、マスコミ向けに動物実験の情報を積極的に提供している施設は61箇所、外部の訪問客を受け入れた施設は57箇所、学校に演者を派遣あるいは施設に学生を受け入れた施設は56箇所、マスコミの撮影を受け入れた施設は13箇所である(2019年)。情報公開において先駆的な試みを行った施設には、12月に開催される情報公開表彰式において表彰される。

 UARは他にも様々な活動を行っている。Webサイトには様々な情報や統計データ、国内外の実験動物を用いた研究に関するニュースが提供されている。様々な動物実験のプロトコールについて、目的や利点だけでなく苦痛についても紹介され、また、学生、ジャーナリスト、一般人向けに動物実験の情報を提供するウェブサイトanimalresearch. infoや、複数の動物施設のバーチャルツアーが体験できるlabanimaltour.orgも作成している。twitter等ソーシャルメディアも積極的に用い、多方面に情報提供を行っている(COVID-19のワクチンの開発過程における動物実験を行う意義について説明した図は、英国の多くのメディアでシェアされた)。

 特に印象的な試みは、11〜18歳を対象に、UARがアンバサダーを学校に派遣し、ワークショップにて学生と”対話”することである若年層ほど動物実験に抵抗を持っているので、将来を担う若者に正しい情報を隠すこと無く提供し、自発的に理解を深めてもらうことが目的である。人は一方的に事実を投げかけられても正しい判断を下すことができないため、学生との共通点や見解の一致点を探すことができる”対話”形式を用いている。年間1万人のペースで、すでに10万人以上の学生と対話を行ってきた。アンバサダーは動物実験の専門家(研究者、医療関係者、獣医師等)や動物飼育スタッフからなる167名のボランティアである。彼らは、効果的な対話法やプレゼン法の研修を受けた後に学校に派遣される。UARのHPには、学校向けコンテンツの一部が公開されている。学生アンケートの結果、アンバサダーのうち管理獣医師の話が最も信用できるとのことである。また、学生や先生方に動物実験施設見学の機会も設けている。

 これらの試みによって、動物実験に関して英国民が入手できる情報は飛躍的に増え、事実を公表しても悪い影響や反発は起きていないこと、施設のHPで情報が豊富に入手できるため情報公開請求件数も減少し、動物実験に関するマスコミのネガティブな報道が大幅に減少したようだ。

 本稿ではUARの試みの一部を紹介しましたが、動物実験の社会的理解を得るための情報発信のあり方について、議論のきっかけになっていただければ幸いです。

コラム