logo

当サイトではサービス向上のためにCookieを取得します。同意いただける場合は、「同意する」ボタンをクリックしてください。
詳細は、Cookieポリシーのページをご覧ください。

系統の記事一覧

マウスバイオリソースの源流 ~ラスロップ、リトルそしてジャクソン研究所

 本ホームページに「マウスの系統間、亜系統間にみられる遺伝子型、表現型の違い〜C57BL/6JとC57BL/6Nとの比較を中心に」というコラムが登載されています。その中に、「C57BL/6は、C. C. リトルがA. E. ラスロップから1921年に入手したマウスから樹立したC57BL系統に由来します。C57BL/6系統は、1948年にアメリカのジャクソン研究所に導入され維持されてきました」という記載があります。リトルとジャクソン研究所については、実験動物に関わっている方や実験動物学の講義を受講した経験のある方なら一度は耳にしたことがあると思いますが、ラスロップについてはあまり馴染みの無い読者がいるかも知れません。今回は、ラスロップとリトル、リトルとジャクソン研究所の関係についてお話させていただきます。

1. ネズミ愛好家、ラスロップ

“Abbie Lathrop, the “Mouse Woman of Granby”: Rodent Fancier and Accidental Genetics Pioneer”

 これは、C57BL/6Jの元となった「マウス#57」をリトルに提供したラスロップ(Abbie E. C. Lathrop:1868-1918)の生涯と業績を短くまとめた論文のタイトルです[1]。タイトルが示すように、彼女は米国マサチューセッツ州クランビー(生まれはイリノイ州)に生活の拠点を置いていたマウス・ラットの愛好家でした。また、当時としては珍しく動物繁殖業者として研究者にも動物の販売を行っていました。ラスロップは、マウス・ラットの他にもモルモット、ウサギ、フェレットなども飼育していました。そのうちモルモットは、米国政府の要請を受けて第1次世界大戦の戦場での有毒ガス検出に使用されていたそうです。もちろん、最初からこれら小動物の繁殖事業で成功したのでは無く、最初は家禽事業から始めたのですが上手くいかなかったようです。お父さんは教師だったようで(幼少期についての詳細は不明だそうです)、その影響もあって、小さい頃から勉学に優れ、生まれ故郷イリノイ州の教育資格も持っていました。この勤勉な性格が注意深い近親交配によるマウスの繁殖記録とその保存を生むことになり、後のリトルによる近交系の樹立に繋がることになります(その結果、“図らずも” 実験動物学の歴史にその名を残すことになるわけです)。

 ラスロップが繁殖したマウスは、C57BL/6Jの他、C3H/He、CBA、DBA/1, DBA/2など現在の主要な近交系マウスのもとにもなっています。そのため、論文や本に掲載されている近交系マウスの系統樹をみると、C57BL、DBA、C3Hなどの最上流に“Lathropのマウス”という記載を見ることが出来ます [2. 3]。ラスロップの凄いところは、単なるネズミ愛好家・動物繁殖業に留まること無く、その類い希な観察力を研究にまで昇華させたところだと思います。ラスロップは、飼育しているいくつかの動物が異常な皮膚病変を発症していることに気づき、大学の病理学者と共に研究を進めて科学論文を出すまでに至っています。その具体例については論文[1]を参照して頂きたいと思いますが、日々の弛まない動物観察が新しい発見に繋がるのだと彼女の生涯を知ることで改めて思いました。

 なお、参考文献[3]にはラスロップのイラストが掲載されています。もし、学校や大学の図書館、あるいは会社の資料室で蔵書を見つけたら閲覧してみて下さい。

2. リトルとジャクソン研究所の誕生

 次に、実験動物学を学んだ経験がある方なら誰でも一度はその名前を聞いたことのあるリトルとジャクソン研究所の誕生についてです。

 リトル(Clarence Cook Little;1888-1971)は、米国マサチューセッツ州のブルックリン生まれでハーバード大学に学んでいます。そこで出会った高名な動物学・遺伝学者のキャッスル(William Ernest Castle 1867 -1962) に師事し、キャッスルの指示によりマウスの毛色の遺伝に関する研究を始めました。この研究を進めるために、キャッスルは近親交配によって形質が安定している動物をラスロップから提供を受けていました。リトルは、このマウスをもとにして科学的目的のためにより厳密な近親交配を行いました。そして、薄い茶色の野生色では無い毛色のマウス(Dilute, Brown and non-Agouti)が世界最初の近交系として樹立されました(これがDBAです)。リトルはその後、遺伝と癌に関する研究に進むことになり遺伝的要因とマウスの癌の発生率に興味を持つようになりました。リトルは、ラスロップから「マウス#57」の提供を受けて新しい近交系マウスを確立させました。それが、本コラム執筆の切っ掛けとなったマウスで、“the most popular laboratory mouse”として紹介されることが多いC57BL/6(ニックネーム:Black 6)です[3]。DBAやC57BL/6の系統樹立についての詳細は参考文献[3]および他の専門書に譲ることにして、リトル個人についてもう少しだけお話しさせていただきます。

 その後リトルは、1922年に何と33歳の若さでメイン大学(University of Maine:米国メイン州の州立大学)の学長に就任しました。リトルは学長になっても研究を続け、同州の観光地であるバーハーバー(Bar harbor)にマウスの実験室を作り、夏休みにはここで研究を行いました。1925年からはミシガン大学(University of Michigan:米国ミシガン州の州立大学)の学長に就任しましたが、バーハーバーでの研究に専念するために1929年にミシガンを去りました。リトルが大学を離れてバーハーバーで研究に専念出来るための資金援助を行った一人が、ミシガン州デトロイトの自動車メーカー・ハドソンモーターカンパニー(Hudson Motor Company)の当時の責任者であったジャクソン(Roscoe B. Jackson)だったそうです(ジャクソン研究所のホームページより)。米国では、大学の建物、研究所や病院などを設立する際にその資金提供者の名前を組織名や建物名に冠することが良くありますが、リトルも資金援助者であるジャクソンに敬意を示してバーハーバーの研究所にJackson Memorial Laboratory(ジャクソン記念研究所)という名前を付けました。これが、教科書などで説明されている「リトルは1929年にマウスの研究開発と系統保存を行うジャクソン研究所を設立した」の起源となるのです。

 リトルの研究業績についてもう少しだけ触れたいと思います。前述したように、リトルの腫瘍に関する研究はジャクソン記念研究所の設立以前から始まっています。リトルは、F1、F2とマウスの世代が進むにつれて移植した腫瘍の生着率が低くなることに気が付きました。そして、同種異個体からの移植組織の生着性を決定しているは遺伝子であると主張しました(これが、後の主要組織適合遺伝子複合体の発見に結びつきます)。これらの研究は1914年から1916年にかけて行われ、その後、非悪性組織の移植に関する研究論文も発表しています[4]。リトル自身による移植に関する研究は1924年(36歳)の時点で終わりますが、リトルの腫瘍および移植に関する研究が大きな背景となり、実験動物の遺伝的均一性の重要性が生まれ、それがジャクソン研究所の設立につながり、その後の多様な“近交系”実験動物の系統開発・維持に繋がるわけです。

3.  現在のジャクソン研究所とホームページ

 ジャクソン研究所(以下、JAX)のホームページ(https://www.jax.org/)には「2019年に設立90周年を迎えた」旨の記述が見られます。これは、1929年のリトルによる「ジャクソン記念研究所」設立からの年数と一致します。ホームページによると、設立当初8人だった従業員は現在では約3,000人を擁しているとのことです。現在のJAXは、リトルが最初に研究室を作ったバーハーバーのマウス研究所(ヒトの病気の遺伝的な原因を研究している)の他、同じくメイン州のエルズワース(Ellsworth)にマウスの生産所、オーガスタ(Augusta)にガン研究所、カリフォルニア州サクラメント(Sacramento)にマウスの生産所と幹細胞などの提供サービス行う研究所、コネチカット州ファーミントン(Farmington)にゲノム研究所があります。また、日本(旧・日本チャールス・リバー)や中国(上海と北京)には子会社を持ち、実験動物の生産や微生物モニタリングサービスなど実験動物に関連したサービスを提供しています。このように、リトルがマウスの研究所としてスタートさせたジャクソン記念研究所は、現在ではC57BL/6Jを初め12,000以上の実験動物の系統を維持・生産するまでに成長しています(JAXのホームページより)。しかし、大きな組織となった現在でも米国JAXはあくまで非営利のバイオメディカルの研究機関であり、マウスの供給(バイオリソース)およびマウスを通じてのヒトのゲノミクス研究のデータリソースとしての立ち位置を保っています。米国JAXは世界初のバイオリソースセンターのモデルになったわけで、まさに「ラスロップ〜リトル〜ジャクソン研究所」という流れは、「マウスバイオリソースの源流」と言えるでしょう。

 以下は余談です。今回のコラム執筆にあたりJAXのホームページの教育コンテンツにもアクセスしてみました。EDUCATION & LEARNINGのONLINE LEARNINGに進むと実験動物に関する教育コンテンツを見ることが出来ます(https://www.jax.org/education-and-learning)。対象者の幅はとても広く、高校生や学部学生を対象とした基礎的なものから、大学院生やポスドク、医療関係者向けの教育コンテンツまで用意されています。例えば、「Online MicroLessons & MiniCourses」という初級のオンライン講習では、「マウスが持つどのような特性が人間の生命科学や病気を理解するための研究モデルになっているのか」等について10分ほどのビデオ講義で解説され、講義の終了後にはクイズ画面で講義内容の理解を確認することが出来ます。その他、近交系やハイブリッドマウスの系統、命名法などについての講義もあります。興味を持たれた方は、先ずは無料の初級教育コンテンツを閲覧してみるのは如何でしょうか。

4.最後に

 今回のコラムは、学術面からは外れた話題でしたが楽しんで頂けたでしょうか? C57BL/6Jの元となったマウスを育てたラスロップの生涯を読んで、私は江戸時代の珍玩鼠育草(ちんがんそだてぐさ)の存在を思い出しました[5]。この書物は、1787年(天明7年)に京都で発行された愛玩ネズミの飼育書です。その中には、森脇和郎先生らのグループが系統樹立させたJF1/Ms(JF: Japanese fancy)と非常に良く似た白黒ブチ模様(いわゆるパンダ柄)のネズミの挿絵が見られます。実は、JF1/Msはデンマークの蚤の市で売られていたパンダ柄のペットマウスを日本に持ち帰り、国立遺伝研で近交系として樹立させたものです。さらに面白い事実があります。C57BL/6など世界的に使用されている代表的な近交系マウスとJF1/Msの遺伝子を比べると、類似度の高い配列があちこちに散在していることが判ったのです[6]。すなわち、江戸時代に日本で育てられた愛玩用マウスがヨーロッパに渡り、そこでヨーロッパ産の愛玩用マウスと交雑され、さらに米国でリトルらの手によって実験動物化されるのに寄与し(ゲノム中のSNPの10%程度)、それが現在世界で使用されている主要な近交系マウスになったのです。

 ラスロップと珍玩鼠育草は国も年代も異なりますが、ネズミに魅せられた“アマチュア”の優れた洞察力が生み出した偉業という共通点を感じます。彼らが育てたネズミたちが、生命科学研究に欠かせない実験動物として世界中で利用されていることに時空を超えた感動を覚えると同時に、動物実験には動物への深い愛情としっかりとした観察力が大切なのだと改めて感じました。

参考文献

[1] Steensma DP, Kyle RA, Shampo MA. Abbie Lathrop, the “Mouse Woman of Granby”: Rodent Fancier and Accidental Genetics Pioneer. Mayo Clin Proc. 2010. 85: e83. DOI: 10.4065/mcp.2010.0647

[2] Hugenholtz F and de Vos WM. Mouse models for human intestinal microbiota research: a critical evaluation. Cell. Mol. Life Sci. 2018. 75: 149–160. DOI: 10.1007/s00018-017-2693-8

[3] Morse HC III. Origins of inbred mice. Academic Press, Bethesda. 1978.

[4] Auchincloss Jr H. and Winn HJ. Clarence Cook Little (1888–1971): The Genetic Basis of Transplant Immunology. Am J Transplant.2003. 4: 155–159. https://doi.org/10.1046/j.1600-6143.2003.00324.x

[5] 米川博通、森脇和郎. 実験用マウスの過去と未来.蛋白質核酸酵素1986. 31: 1151-1170.

[6] Takada T, Ebata T, Noguchi H, Keane TM, Adams DJ, Narita T, Shin-I T, Fujisawa H, Toyoda A, Abe K, Obata Y, Sakaki Y, Moriwaki K, Fujiyama A, Kohara Y and Shiroishi T. The ancestor of extant Japanese fancy mice contributed to the mosaic genomes of classical inbred strains. Genome Res. 2013. 23: 1329-1338. DOI: 10.1101/gr.156497.113

コラム

  • 1