logo

当サイトではサービス向上のためにCookieを取得します。同意いただける場合は、「同意する」ボタンをクリックしてください。
詳細は、Cookieポリシーのページをご覧ください。

教育委員会 の記事一覧

マウスバイオリソースの源流 ~ラスロップ、リトルそしてジャクソン研究所

 本ホームページに「マウスの系統間、亜系統間にみられる遺伝子型、表現型の違い〜C57BL/6JとC57BL/6Nとの比較を中心に」というコラムが登載されています。その中に、「C57BL/6は、C. C. リトルがA. E. ラスロップから1921年に入手したマウスから樹立したC57BL系統に由来します。C57BL/6系統は、1948年にアメリカのジャクソン研究所に導入され維持されてきました」という記載があります。リトルとジャクソン研究所については、実験動物に関わっている方や実験動物学の講義を受講した経験のある方なら一度は耳にしたことがあると思いますが、ラスロップについてはあまり馴染みの無い読者がいるかも知れません。今回は、ラスロップとリトル、リトルとジャクソン研究所の関係についてお話させていただきます。

コラム

がんも遺伝する:モード・スライの功績

 現在では、化学物質、活性酸素、ウイルス感染、生活習慣や加齢など、さまざまな原因により複数の遺伝子に異常が生じ、がんが生ずることがわかってきている。本コラムでは、実験動物学の黎明期である1900年代初頭の化学発がん説やウイルス発がん説が優勢な頃、マウスを用い、がん遺伝説を提唱したモード・スライ(Maud Slye)を紹介します。

独楽鼠(こまねずみ)

 リンネが名付けたマウスの学名「Mus musculus(ラテン語)」のmusは古代サンスクリット語の「泥棒」を意味するmushaに由来している。ディズニーが自室に迷い込んだマウスを餌付けし、このマウスを参考にキャラクターを考案したというのは架空の話のようだが、招かれざる客が、歓迎すべき客となり、飼い慣らし繁殖したものが現在の愛玩用マウス(ファンシーマウス)になったとの説が有力である。他の愛玩動物と同様、古代より愛好家たちは、興味深い毛色や行動パターンを持つ珍しいタイプを選んで交配・維持してきたようだ。1920年代には、英米でマウス愛好家組織が結成されたほどポピュラーな存在になった。このムーブメントは1927年のミッキーマウスの誕生にも影響を与えたかもしれない。

 1890年代の米国では、ワルツを踊るようにくるくる回る、ジャパニーズワルチングマウス(Japanese waltzing mouse :JWM)がペットとして人気を博した。心理学者のロバート・ヤーキーズは、このマウスの由来や習性を調べ本にまとめている [1]。このワルツを踊るマウスは、紀元前の中国の漢の時代の文献に登場している。日本では独楽鼠または舞鼠と言われていた。JWMは、中国から日本を経て欧州に到着し、その後、米国に上陸したと思われる。ヤーキーズが所有したJWMは、白地に黒の斑点や縞模様が入っていたことから、JF1マウス(パンダマウス)と同様、エンドセリン受容体B型遺伝子(Ednrb)の変異をもっていたのであろう [2]。JWMは、旋回運動を示すほか難聴でもあり、これらの症状は、遺伝性の内耳の構造異常に起因する場合が多い。平衡感覚がおかしいので、体勢を維持するために旋回するのである。この表現型(遺伝変異)を持つマウスは1947年にジョージ・スネルによってジャクソン研究所へ導入後、近交系C57BL/10に交配することで変異遺伝子が維持され、現在でも同所に受精卵が凍結保存されている[2]。2001年に、聴覚と平衡感覚器官の異常の原因としてカドヘリン23遺伝子の変異が同定された [3, 4]。また、カドヘリン23は、人の先天的難聴を伴う遺伝病であるUsher症候群の原因遺伝子と同一であることが判明した [5]。

コラム

運動器を制御する非線維性コラーゲン分子の役割  〜遺伝子改変マウスモデル研究からわかったこと〜

岡山理科大学獣医学部 伊豆弥生(JALAM教育委員会)

 コラーゲンは、哺乳動物を構成するタンパク質の中で最も多く含まれる(全タンパク質の約30%)細胞外マトリクス構成成分であり、3本のa鎖からなる3重らせん構造(コラーゲン構造)を特徴とした分子群を表します。コラーゲン分子は、現在までに28種類が発見され、順番にI型、II型とローマ数字で番号が付けられています。コラーゲン分子は、自身が重合し線維を形成する線維性コラーゲンと、線維形成をしない非線維性コラーゲンの2つに大別されます。「コラーゲン」としてよく知られているのは、I型やII型であり、これらは線維性タイプに分類され、組織の構造基盤を構築します。一方、非線維性タイプは、ビーズ状や膜貫通型など様々な構造をもち、線維性タイプが作る線維の太さや長さなどの調節に関与する他、細胞の増殖や分化など、生理活性分子として機能することも知られています。私はこれまで、非線維性コラーゲンのうち、VIとXII型コラーゲンに着目して研究を行ってきましたので、本コラムでは、これらコラーゲン分子による運動器制御機構について、動物モデルの研究結果とともに紹介したいと思います。

コラム

国内承認ワクチンの非臨床試験を垣間見る    〜ワクチン開発と動物実験〜

 核酸ワクチンなどの新規剤型ワクチンが国内で承認され、薬事承認の過程を含む「いわゆる教科書」が書き換えられつつある。その影響か、マスコミ等で臨床試験や承認申請のスケジュールについて採り上げられることはあるいっぽうで、非臨床試験(動物実験)の経過を耳にすることはほとんどない。非臨床試験への社会的な関心度が低いとみなされているのかどうかはともかく、「非臨床試験の内容についても情報発信されている」ことを、ワクチンを例に紹介したい。

 独立行政法人医薬品医療機器総合機構(PMDA)は、医療用医薬品情報を公表している 1)。この情報検索サイトで「ワクチン」の「審査報告書等」について文書検索すると、84件のワクチンが表示された (2022年8月末)。内訳は、インフルエンザ関連が28件、新型コロナ関連、麻しん関連、風しん関連が各7件、肺炎球菌が5件、百日せき関連、ジフテリア関連、破傷風関連、ポリオ関連、パピローマが各4件、ヘモフィルスb型と日本脳炎が各3件、水痘、おたふくかぜ、狂犬病、A型肝炎、B型肝炎、ロタウイルスが各2件、黄熱、結核、痘そう、帯状疱疹、髄膜炎菌が各1件とある (混合ワクチンは複数件にカウント)。同様に、一般社団法人日本医薬情報センター(JAPIC)では、1998年以降の医療用医薬品「日本の新薬」について検索可能である2)

 PMDAのサイトでは「審査報告書」に加え「申請資料概要」も公表されていることが多く (一部内容に未公表あり)、製造販売業者が提出した資料の概要、すなわち、開発の経緯や、承認申請までに実施した非臨床試験及び臨床試験の内容を垣間見ることができる。非臨床試験の内容については日付や実施機関などを除いて「審査報告書」内で開示されており、試験の目的のほか、げっ歯類や霊長類の使用についても具体的に記載されている。あるワクチンの非臨床試験結果には、「若齢及び高齢のマウス、ラット、ハムスター及びNHP(non-human primate、この場合はアカゲザル)において、高レベルの結合抗体及び中和抗体を誘導し、(以下略)」とある。また、「効力を裏付ける試験 (免疫原性試験、攻撃試験)」、「安全性薬理試験 (反復投与毒性試験、生殖発生毒性試験)」や「薬物動態試験 (生体内分布評価試験)」が行われたことのほか、このワクチンが臨床で6か月以上継続使用されないことから「がん原性試験」を実施していないことが記されている。

コラム

コットンラット〜全身に病気を併存する不思議な実験動物〜

中村鉄平 獣医師、博士(獣医学)、北海道大学大学院獣医学研究院実験動物学教室 准教授

 みなさんは、実験動物と聞いてどんな動物を想像するでしょうか?実験動物とは実験のために生産・飼育される動物であり、マウス、ラット、ウサギ、サルなどがよく知られています。広い意味では、科学に利用される産業用動物や野生動物も実験動物に含まれるため、全ての動物種が実験動物と考えることもできます。多岐に渡る実験動物の中からどの動物を実験に用いるかは、実験動物の持つ特性と実験目的を考慮して、研究者や動物実験委員会で入念に検討され決定します。実験動物は種により様々な特性を持ちます。近年では、ハダカデバネズミが老化やがんに抵抗性を持つこと(1)やハムスターがSARS-CoV-2に感受性が高いこと(2)が明らかになりました。このように、既存の実験動物の新たな特性が明らかになることで、これまで分からなかった病気のメカニズムを解明できる可能性があります。このコラムでは、ユニークな特性を持つコットンラットという実験動物について紹介させていただきます。

コラム

ブタの麻酔医〜周術期管理に関する総論的なお話〜

鹿児島大学先端科学研究推進センター 生命科学動物実験ユニット

瀬戸山健太郎

 ブタは解剖学的、生理学的にヒトと類似しているため、外科的処置を伴う研究や医療技術トレーニングで利用される機会が増えています。そのため、研究をサポートする立場である我々にとってブタの麻酔や周術期管理の知識/技術の習得は必要不可欠です。そこで、今回、ブタの麻酔(周術期)管理の基本事項について紹介したいと思います。なお、私自身、クラウン系ミニブタ(30~40kg)を用いた研究に多く従事してきたことから、これら経験に基づく私見が含まれていますこと、ご容赦ください。

〇術前処置

 ブタでは麻酔時の誤嚥等を防止するため12時間以上の絶食が必要です。特に消化管の処置を行う際は消化管内容物を空にするため24~48時間の絶食が必要となります[1, 2]。絶食が不十分な場合、ブタの結腸が横隔膜を圧迫するため呼吸管理が難しくなり、腹腔内の操作も困難になるケースがあるので、絶食処置は確実に行うことがとても重要です。飲水は術前まで可能ですが、腹腔内手術を行う際には4~6時間程度の絶水を行います[1]。また、経験的に絶食を行ったブタは飲水量が減少する傾向にあるので、麻酔導入後の輸液は十分に行った方が良いでしょう。

麻酔導入ブタではイヌやネコに比べて体が大きく、力が強いため保定が容易でないこと、体表の血管が少ないことから、アプローチが容易な筋肉内投与による麻酔前投与、麻酔導入を行うのが一般的です(図1)。麻酔前投与には流涎抑制や麻酔による徐脈防止のためアトロピンを用いるのが一般的です[1]。麻酔導入薬としては、ミダゾラム-メデトミジン、メデトミジン-ケタミン、ミダゾラム-メデトミジン-ブトルファノールなど様々な薬剤が用いられますが[2, 3]、これら薬剤では麻酔導入が不十分(体動)なケースを経験したことがあります。そのため、当施設ではミダゾラム-メデトミジン-ケタミン混合薬の筋肉内投与にて麻酔導入を実施しています。麻酔導入が不十分な場合には薬剤を追加で投与する必要がありますが、追加投与は呼吸停止、血圧低下などのリスクがあることを十分に考慮し、追加投与の必要性や投与量について、追加投与する際に慎重に検討する必要があります。また、麻酔導入~挿管までは動物にとって呼吸停止や血圧低下といったリスクが高い時間帯であるため、呼吸状態、血圧、可視粘膜の確認を怠ってはいけません。

コラム

理研マウスENUミュータジェネシスプロジェクトを利用したフォワードジェネティクス研究

岩手大学農学部共同獣医学科・実験動物学研究室 古市 達哉

 

 マウス遺伝学の研究には大きく分けて2つのアプローチが存在します。フォワードジェネティクス(順遺伝学)アプローチでは、遺伝性がみられる異常形質をもつマウスを見つけ出し、その原因となる遺伝子変異を連鎖解析などの手法を用いて同定します。リバースジェネティクス(逆遺伝学)アプローチでは、特定の遺伝子のノックアウト(KO)やトランスジェニックマウスを作製し、どのような表現型が発現するのかを調べます。私はこの2つのアプローチを駆使して、骨格系(骨、軟骨、関節)に異常を示す遺伝子変異マウスを同定し、骨格の発生メカニズムや骨関節疾患の病態機序について研究しています。

 私は2004年〜2010年の間、理化学研究所に勤務していました。この頃、理研ゲノム科学総合研究センター(GSC)では、大規模なマウスENUミュータジェネシスプロジェクトが展開されていました1)2)。N-ethyl-N-nitrosourea(ENU)はゲノムDNA上に高頻度で点突然変異を誘発する化学変異原であり、ENUを腹腔内投与した雄マウスと正常雌マウスを交配することで誕生した約10,000匹の突然変異第一世代(G1)マウスから摘出した精子の凍結保存ライブラリーが構築されました。私たちは、これらG1と次世代のG2で誕生した多くの遺伝子変異マウスの中から、骨格系に異常を示す個体を見つけ出し、原因遺伝子の同定を試みるフォワードジェネティクス研究を展開してきました。

コラム