logo

当サイトではサービス向上のためにCookieを取得します。同意いただける場合は、「同意する」ボタンをクリックしてください。
詳細は、Cookieポリシーのページをご覧ください。

動物実験の記事一覧

ミネラル調節ホルモン「スタニオカルシン-1」:変わらずに変わった変わり者?

山梨大学総合分析実験センター 准教授 兼平雅彦

I. はじめに

“ミネラル調節”と聞いて、皆さんはどんなイメージをもつでしょうか?「熱中症予防には水ではなくスポーツドリンクが有効」「加齢、運動不足等で骨が脆くなる」等々。魚類ではどうでしょうか?海水には淡水に比べ、ナトリウムやマグネシウムなどの大量のミネラルが存在するため、海水魚と淡水魚の生育環境は著しく異なります。しかし、料理に用いる調味料の量はだいたい同じです(全く違うというプロの意見もあるかもしれませんが・・・)。高校生物の知識を思い起こすと、淡水魚は、鰓で水中の塩類を積極的に吸収し、低張な尿を大量に排泄することで、体液中の塩類濃度を外部環境より高く保っています。一方、海水魚は、海水を大量に飲みこみ、水分を腸から吸収しつつ、過剰な塩類を鰓から積極的に排出し、かつ等張の尿を少量排泄することで、体液の塩類濃度を外部環境より低く保っています。ここではミネラルの一元素カルシウムを中心に話を進めますが、魚類、特に海水魚は、飲水から常時カルシウムが体内に流入しますので、常に血中カルシウム濃度が高値になる恐れがあります。一方、主に陸上で生活する爬虫類、鳥類、哺乳類は、摂餌によりカルシウムを腸管から吸収し、リン酸カルシウムの形で骨に貯蔵して必要に応じて利用します。すなわち、血中カルシウム濃度に関しては、魚類、特に海水魚は「下げる」メカニズム、爬虫類、鳥類、哺乳類は「上げる」メカニズムが重要といえます(以下、本稿では魚類と哺乳類に限って話を進めます)。魚類の血中カルシウム濃度を下げるホルモンとしてスタニオカルシン-1が知られていますが、哺乳類では同じスタニオカルシン-1が全く別の働きをしています(図1)。本コラムでは、姿形を変えずに、役割を変えることで生き残った不思議な分子、スタニオカルシン-1について紹介します。

コラム

国内承認ワクチンの非臨床試験を垣間見る    〜ワクチン開発と動物実験〜

 核酸ワクチンなどの新規剤型ワクチンが国内で承認され、薬事承認の過程を含む「いわゆる教科書」が書き換えられつつある。その影響か、マスコミ等で臨床試験や承認申請のスケジュールについて採り上げられることはあるいっぽうで、非臨床試験(動物実験)の経過を耳にすることはほとんどない。非臨床試験への社会的な関心度が低いとみなされているのかどうかはともかく、「非臨床試験の内容についても情報発信されている」ことを、ワクチンを例に紹介したい。

 独立行政法人医薬品医療機器総合機構(PMDA)は、医療用医薬品情報を公表している 1)。この情報検索サイトで「ワクチン」の「審査報告書等」について文書検索すると、84件のワクチンが表示された (2022年8月末)。内訳は、インフルエンザ関連が28件、新型コロナ関連、麻しん関連、風しん関連が各7件、肺炎球菌が5件、百日せき関連、ジフテリア関連、破傷風関連、ポリオ関連、パピローマが各4件、ヘモフィルスb型と日本脳炎が各3件、水痘、おたふくかぜ、狂犬病、A型肝炎、B型肝炎、ロタウイルスが各2件、黄熱、結核、痘そう、帯状疱疹、髄膜炎菌が各1件とある (混合ワクチンは複数件にカウント)。同様に、一般社団法人日本医薬情報センター(JAPIC)では、1998年以降の医療用医薬品「日本の新薬」について検索可能である2)

 PMDAのサイトでは「審査報告書」に加え「申請資料概要」も公表されていることが多く (一部内容に未公表あり)、製造販売業者が提出した資料の概要、すなわち、開発の経緯や、承認申請までに実施した非臨床試験及び臨床試験の内容を垣間見ることができる。非臨床試験の内容については日付や実施機関などを除いて「審査報告書」内で開示されており、試験の目的のほか、げっ歯類や霊長類の使用についても具体的に記載されている。あるワクチンの非臨床試験結果には、「若齢及び高齢のマウス、ラット、ハムスター及びNHP(non-human primate、この場合はアカゲザル)において、高レベルの結合抗体及び中和抗体を誘導し、(以下略)」とある。また、「効力を裏付ける試験 (免疫原性試験、攻撃試験)」、「安全性薬理試験 (反復投与毒性試験、生殖発生毒性試験)」や「薬物動態試験 (生体内分布評価試験)」が行われたことのほか、このワクチンが臨床で6か月以上継続使用されないことから「がん原性試験」を実施していないことが記されている。

コラム

がんも遺伝する:モード・スライの功績

 現在では、化学物質、活性酸素、ウイルス感染、生活習慣や加齢など、さまざまな原因により複数の遺伝子に異常が生じ、がんが生ずることがわかってきている。本コラムでは、実験動物学の黎明期である1900年代初頭の化学発がん説やウイルス発がん説が優勢な頃、マウスを用い、がん遺伝説を提唱したモード・スライ(Maud Slye)を紹介します。

独楽鼠(こまねずみ)

 リンネが名付けたマウスの学名「Mus musculus(ラテン語)」のmusは古代サンスクリット語の「泥棒」を意味するmushaに由来している。ディズニーが自室に迷い込んだマウスを餌付けし、このマウスを参考にキャラクターを考案したというのは架空の話のようだが、招かれざる客が、歓迎すべき客となり、飼い慣らし繁殖したものが現在の愛玩用マウス(ファンシーマウス)になったとの説が有力である。他の愛玩動物と同様、古代より愛好家たちは、興味深い毛色や行動パターンを持つ珍しいタイプを選んで交配・維持してきたようだ。1920年代には、英米でマウス愛好家組織が結成されたほどポピュラーな存在になった。このムーブメントは1927年のミッキーマウスの誕生にも影響を与えたかもしれない。

 1890年代の米国では、ワルツを踊るようにくるくる回る、ジャパニーズワルチングマウス(Japanese waltzing mouse :JWM)がペットとして人気を博した。心理学者のロバート・ヤーキーズは、このマウスの由来や習性を調べ本にまとめている [1]。このワルツを踊るマウスは、紀元前の中国の漢の時代の文献に登場している。日本では独楽鼠または舞鼠と言われていた。JWMは、中国から日本を経て欧州に到着し、その後、米国に上陸したと思われる。ヤーキーズが所有したJWMは、白地に黒の斑点や縞模様が入っていたことから、JF1マウス(パンダマウス)と同様、エンドセリン受容体B型遺伝子(Ednrb)の変異をもっていたのであろう [2]。JWMは、旋回運動を示すほか難聴でもあり、これらの症状は、遺伝性の内耳の構造異常に起因する場合が多い。平衡感覚がおかしいので、体勢を維持するために旋回するのである。この表現型(遺伝変異)を持つマウスは1947年にジョージ・スネルによってジャクソン研究所へ導入後、近交系C57BL/10に交配することで変異遺伝子が維持され、現在でも同所に受精卵が凍結保存されている[2]。2001年に、聴覚と平衡感覚器官の異常の原因としてカドヘリン23遺伝子の変異が同定された [3, 4]。また、カドヘリン23は、人の先天的難聴を伴う遺伝病であるUsher症候群の原因遺伝子と同一であることが判明した [5]。

コラム

文献紹介:フィンランドにおける実験用ビーグルの最初のリホーミング:社会化訓練からフォローアップまでの完全なプロセス

The First Rehoming of Laboratory Beagles in Finland: The Complete Process from Socialisation Training to Follow-up

Laura Hänninen, Marianna Norring

Altern Lab Anim. 2020 May; 48(3): 116-126. doi: 10.1177/0261192920942135

概要
実験動物の運命は、倫理的なジレンマであり、社会的な関心事でもある。EUでは、指令2010/63/EUにより、安楽死ではなく、元実験動物のリホーミングが認められている。しかし、我々の知る限り、フィンランドでビーグルのリホーミングが行われたという報告は過去にない。本研究は、ヘルシンキ大学で初めて行われた実験用ビーグルのリホーミングの過程を説明し、その成功を評価することを目的としている。動物保護団体とヘルシンキ大学の協力のもと、合計16頭の元実験用ビーグルが里親として迎えられた。これらの犬は、動物の認知に関する研究に参加したり、動物用医薬品の開発中に小さな処置を受けたりした経験があります。犬たちがまだ実験室にいた頃、数ヶ月に及ぶ社会化トレーニングプログラムが実施された。里親へのアンケート調査、関係者(研究者、動物保護団体、動物管理者)へのインタビューを通じて、社会化トレーニングプログラム、若い犬と高齢の犬の再導入の比較成功、里親の選定基準、新しい飼い主への再導入の成功など、全体のプロセスが評価された。大半の犬は新しい家庭環境によく適応した。実験的な使用を終えた時点で安楽死させることは不必要であり、欧州指令の目的に反する可能性があった。

フィンランドでは、科学的または教育的目的のための動物の使用を対象とする国内法(Act 497/2013)があり、科学的目的のために使用される動物の保護に関する欧州指令2010/63/EUに基づいています。
EU指令は実験動物の運命に関わり、すべての欧州機関に実験犬が実験用途に不要になった後にリホーミングする機会を与えています。
Article 19では、実験に使用された動物は、動物の健康状態がそれを許し、公衆衛生、動物の健康、環境に対する危険がない場合、一定の条件を満たせば、リホーミングすることができるとしています。また、EU指令の前文26には、「手続きの最後に、動物の将来に関して、動物福祉と環境への潜在的なリスクに基づいて、最も適切な決定がなされるべきである。福祉が損なわれるような動物は、殺処分されるべきである」との記述もあります。
したがって著者らは、暗黙の了解として福祉が損なわれない動物は殺処分されるべきではないと考えています。
本研究は、フィンランドで行われた実験用ビーグルの最初のリホーミングと社会化プログラムについて述べたものです。

コラム

ミノキシジルの中毒リスクはどれくらいなのか?

文献紹介:犬、猫におけるミノキシジル外用薬の暴露状況とその毒性:211症例(2001-2019)の中で、ミノキシジルの偶発的な暴露による犬や猫の中毒のリスクについて紹介されました。

医薬品の開発においては非臨床試験(動物実験)により、その薬の安全性や毒性が確認されていると考えられますが、動物に対する影響はどのようなものだったのでしょうか。

先のコラムでは後ろ向き研究であることが注意喚起されていますが、調べてみると、微量の暴露が重篤な中毒の危険性を引き起こすということは過剰な結論であるようにも考えられました。

私自身、ミノキシジルは育毛剤としての認識が先行してしまっていましたが、そもそも経口降圧剤として開発されたものであり、本邦では経口薬の承認はされていませんが、現在はファイザー社によってLoniten®として販売されています。その使用において、多毛の副作用が認められたことから、外用発毛剤として開発されたものであるということでした。
したがって、ミノキシジル外用薬を経口摂取した場合の中毒症状というのは、そもそもミノキシジルがもつ主作用である可能性が考えられます。

一方で、医療用医薬品として開発された後に一般用医薬品となっています。その安全性については経口薬の開発段階では十分に調べられていたかもしれませんが、適応を変更した際には改めて詳しくは調べられていないかもしれません。既に必要な安全性が確認されているものであれば再試験をしないということは開発戦略としては妥当と考えられますし、不要な試験をしないということは3Rsの観点からも適切と考えられるところです。

コラム

凄いぞ 実験動物! – 2021 年アルバート・ラスカー賞は光遺伝学 –

実験動物から得られた画期的成果をご紹介します。
〜国立大学法人動物実験施設協議会の許可を得て転載〜

 今年のアルバート・ラスカー基礎医学研究賞は光遺伝学の発展に貢献した 3 名の科学者 が受賞されました。本賞の受賞者はノーベル生理学・医学賞を授与されることが多く、た いへん権威ある賞です。ディーター・エスターヘルト博士は光駆動の水素イオンポンプ活 性を示すバクテリオロドプシンを発見、ペーター・ヘーゲマン博士は現在光遺伝学で汎用 されているイオンチャネル型の光活性化タンパクであるチャネルロドプシンを発見、カー ル・ダイセロス博士はこの分子を神経細胞に発現させ光応答させるシステムを作成、動物 の行動を光で制御することに成功しました。光遺伝学は実験動物の脳機能解析に応用され ており、多くの画期的な研究成果が得られています。今回は、その一部をご紹介します。

心を科学

 初めてのデートや失恋など強い感情はひとつの 記憶として心の中に長く残ります。この記憶は記 憶痕跡と呼ばれます。最近では記憶痕跡が脳のひ とつの場所だけでなく連携し広く存在していると 考えられているようです。事実、記憶には五感的 な要素が含まれ総合的なものなのです。2012 年にマサチューセッツ工科大学の利根川 進先生(1987 年ノーベル生理・医学賞受賞)たちはマウ スの記憶痕跡に関わる脳の特定の神経細胞にチャ ネルロドプシンを遺伝子操作で発現させ、マウス に恐怖体験をさせた後、光刺激のみでマウスの心に残っている恐怖体験の記憶痕跡を想起 させることに成功しました。心は形あるものの変化に基づいていることを光遺伝学と実験 動物で証明した画期的な研究です。

Optogenetic stimulation of a hippocampal engram activates fear memory recall Liu et al., (2012) Nature, 484: 381-385. doi: 10.1038/nature11028

コラム

文献紹介:英国で行われた実験動物のリホーミング実践に関する調査

A semi-structured questionnaire survey of laboratory animal rehoming practice across 41 UK animal research facilities

Tess Skidmore, Emma Roe

PLoS One. 2020 Jun 19;15(6):e0234922. doi: 10.1371/journal.pone.0234922.

概要
実験動物が福祉を損なうことなく実験を乗り切った場合、その将来について交渉しなければならない。リホーミングが考慮されるかもしれない。この論文では、英国の施設における動物のリホーミングの受け入れ状況と、リホーミングするかしないかの判断に関わる道徳的、倫理的、実用的、規制的な考慮事項を示す研究結果について報告している。本研究では、英国の研究施設でリホーミングされている動物の数や種類、リホーミングを行っている主な動機、リホーミングを行っていない施設にとっての障壁などを理解することで、広く知られている文献のギャップを解消することを目的としています。英国にある約160の研究施設のうち、41施設がアンケートに回答し、回答率は約25%でした。その結果、リホーミングは日常的に行われていることが示唆されましたが、その数は少なく、2015年から2017年の間にリホーミングされたとされる動物はわずか2322頭でした。少なくとも10施設のうち1施設はリホーミングを行っていることになります。ある種の動物(主に猫、犬、馬)が他の種(げっ歯類、農耕用動物、霊長類)よりも明らかにリホーミングされることを好む傾向があります。実際、実験室で飼育されている動物の94.15%がげっ歯類であるにもかかわらず、2015年から2017年の間にリホーミングされたことがわかっている動物の5分の1以下(19.14%)を占めています。リホーミングの主な動機は、スタッフの士気を高め、施設の倫理的プロファイルをポジティブにすることです。障壁となるのは、再帰の際の動物の福祉に対する懸念、動物に対する科学的な需要が高く、リホーミングの対象となる動物が少ないこと、そして、特定の動物(主に遺伝子組み換え動物)がリホーミングに適していないことです。この研究の結果は、リホーミングを選択している施設だけでなく、現在リホーミングを行っていない施設にも役立つものです。リホーミングを推進することで、実験動物の生活の質を向上させ、施設のスタッフが殺処分の道徳的ストレスを克服し、実験動物の運命に関する社会的関心に応えることができるという利点があります。英国の研究施設の視点から見たリホーミングについての理解が得られて初めて、適切な政策や支援が可能になります。

英国内務省の定義によると、リホーミングとは、”関連する保護対象動物を施設から、Animals (Scientific Procedures) Act に基づく施設ではないその他の場所に移動させること”とされています。そして、その「場所」としては、農場、水族館、動物園、または個人宅が選ばれています。

調査の結果、2015年から2017年の間に、英国の約160の施設のうち、少なくとも19施設、11.9%がリホーミングをしていました。リホーミングされた数は2322匹で、対象となる動物種に大きく依存していました。

実験室で飼育されている動物の94.15%がげっ歯類であるにもかかわらず、リホーミングされたとされる動物の5分の1以下(19.14%)であり、逆に、鳥類、猫、犬、馬、両生類、農業動物は、飼育されている動物のわずか5.84%を占めるにもかかわらず、リホーミングされた全種の80.86%を占めていました。

特集

文献紹介:リホームされた実験用ビーグルは、日常的な場面でどのような行動をとるのか?観察テストと新しい飼い主へのアンケート調査の結果

How do rehomed laboratory beagles behave in everyday situations? Results from an observational test and a survey of new owners

Dorothea Döring, Ophelia Nick, Alexander Bauer, Helmut Küchenhoff, Michael H Erhard

PLoS One. 2017 Jul 25; 12(7): e0181303. doi: 10.1371/journal.pone.0181303. eCollection 2017.

概要
実験用の犬が一般家庭に戻されると、犬の生活環境は大きく変化します。慣れ親しんだ研究施設の限られた環境を離れ、新しい家庭では生物や無生物の様々な刺激に遭遇します。文献によると、リホームの経験はほとんど肯定的であるとされていますが、日常的な状況における犬の科学的な観察は行われていません。そこで我々は、74頭の実験用ビーグルを用いて、新しい家に迎え入れてから6週間後に観察テストを行った。このテストには標準化されたタスクと要素が含まれており、犬たちは新しい飼い主との具体的なやりとりや散歩中に観察されました。さらに、この74頭と71頭の飼い主は、里親になってから1週間後と12週間後に、標準化された電話インタビューに参加し、日常的な場面での犬の行動について質問に答えました。観察テストでは、犬は人間や犬に対してほとんど友好的に振る舞い、飼い主が操作している間も寛容で、散歩中は交通量が多くてもリラックスしていました。80%(n=71のうち)の犬は、リードを引っ張らずに行儀よく歩いていた。インタビューによると、大多数の犬が望ましい、友好的でリラックスした行動を示しており、アンケート結果は犬と飼い主の絆を反映していた。様々な要因(年齢、性別、出身地など)の影響を混合回帰モデルで分析したところ、過去2回の行動テストとインタビューの結果を確認することができました。具体的には、研究施設で飼育されていた犬は、研究施設が商業的な実験用犬のブリーダーから購入した犬よりも、有意に良いスコアを示した(p = 0.0113)。本研究の結果は、リホームされたビーグルたちが新しい生活環境にうまく適応できたことを示している。

ドイツでは、多くの企業や大学が長年にわたってリホーミングを促進しており、ドイツの動物福祉法は、脊椎動物の殺害を「正当な理由なしに」罰せられる犯罪と宣言しています。ドイツのほとんどの犬は、専門の動物福祉団体を通じてリホームされています。

本研究では、ドイツの製薬会社(Bayer AG, Leverkusen, Germany)で飼育されている145頭の実験用ビーグルが研究対象となりました。平均年齢±標準偏差は2.2±1.5歳、生後2か月から7.9歳のオス65頭、メス80頭でした。研究施設内の6m2の室内犬舎で、主に単独で飼育されており、少なくとも1日1回は屋外のランを利用していました。犬舎には、寝床、木製の噛みつき棒、犬用のおやつが用意されており、また、犬たちは採血、一般的な検査、経口投与、ワクチン接種などの医療行為に慣れていました。

インタビューの結果では、大多数の新しい飼い主は、愛犬が自分との接触を求め、撫でられるのが好きで、グルーミングも喜んで許可し、ほとんどの犬は、子供や他の犬を含む他の家族に対して友好的であると報告されました。犬たちは獣医師に対しても寛容で、通行人や見知らぬ子供に対する犬の行動は友好的で慎重でした。

見知らぬ子供、飼い猫、獣医師に対する行動だけが、時間の経過とともに若干悪化したとのことですが、時間の経過とともに望ましい行動の出現率が増加しており、犬は日常生活に適応し、飼い主との情緒的な結びつきが見られたと考えられています。

特集

文献紹介:実験動物獣医師の生物医学研究におけるマウスの福祉に対する調査

A Survey of Laboratory Animal Veterinarians Regarding Mouse Welfare in Biomedical Research.
Marx, James O ; Jacobsen, Kenneth O ; Petervary, Nicolette A ; Casebolt, Donald B
JAALAS, Volume 60, Number 2, March 2021, pp. 139-145(7)
doi.org/10.30802/AALAS-JAALAS-20-000063

【概要】
研究用動物の福祉の質は、その動物から生み出される科学的成果の質に否応なく結びついている。マウスは生物医学研究において最もよく用いられる哺乳動物種であるが、将来の進歩を促すためにどのような要素を考慮すべきかについては、ほとんど情報がない。この問題を解決するために、米国実験動物獣医師会(ASLAP)の動物福祉委員会は、実験動物獣医師を対象に、マウスの福祉に関する意見を聞き、生物医学研究における動物福祉に大きく影響する5つの要因(飼育、臨床ケア、実験使用、規制監督、訓練)の役割を検討するための調査を行った。調査の結果、95%の獣医師がマウスの福祉について「許容できる」から「素晴らしい」と評価しましたが、改善すべき点も残されていた。これらの分野には以下が含まれる。

1)実験を行う研究者のトレーニング
2)実験操作によって痛みや苦痛を感じる可能性のあるマウスのモニタリングの頻度
3)痛みや苦痛を感じる可能性のあるマウスのモニタリングに機関の獣医師スタッフを含めること
4)マウスに提供される環境エンリッチメントの継続的な改善
5)研究室内および機関内の他の研究グループでの再発を防止するために、IACUC(動物実験委員会)がコンプライアンス違反の事例に完全に対処する能力があること
6)病気や怪我をしたマウスの検査、病気の診断、治療の処方を獣医師以外の人に頼っていること

アメリカの動物実験規制は自主管理を柱とする体制であり、日本の動物実験に関する法制度の基本的な枠組みもこの自主管理制度を参考にしているとされています。しかし、これらの法的根拠となる動物福祉法(Animal Welfare Act; AWA)の対象動物には動物実験で多く用いられるマウスやラットなどが含まれておらず、どのように動物福祉が担保されているか外からは分かりづらい問題がありました。そこでASLAPはマウスの福祉が実際にはどうなっているか、会員にアンケートを実施したのがこの論文の趣旨です。

今回の調査では、95%の獣医師がマウスの福祉全般を「許容できる」から「優れている」と評価した一方で、半数の獣医師が、ケアの水準向上を正当化する科学的データがないことが、研究用マウスの福祉向上の主な制約になっていると考えているとのことです。特に、環境エンリッチメントの評価にばらつきがあるのは、環境エンリッチメントの基準を裏付ける実験データがないことが原因と考えられています。

また、実験手順によって痛みや苦痛を感じる可能性のある動物の観察頻度にも懸念があることが報告されました。動物福祉に満足していると回答した獣医師の多くは、観察頻度を1日あたり3回以上に設定しているのに対し、動物福祉が不十分であると回答した獣医師の多くは、観察頻度が1日1回以下であると回答しています(下表)。満足度は必ずしもケアの回数に比例するわけではありませんが、獣医師の満足度が高い施設では相対的に観察頻度が高くなっているようです。このように、動物に対して単にケアするだけではなく、どれだけ手厚くケアができるかということも動物福祉の重要な要素になっています。

観察頻度に対する回答(上記論文から引用)

日本国内では比較的小規模施設の多くが、マウスやラットのみを飼育している施設であり、実験動物獣医師などの専門家を配置することが出来ずにいます。これらの施設にどうやって動物福祉の考え方を浸透させることができるか、関係者は知恵を絞って考える必要がありそうです。

コラム

実験動物の微生物検査

実験動物は一般に販売されている動物と異なり、特定の病原体を有していないことが明らかになっているSPF(Specific Pathogen Free)動物が多く用いられています。これは病原体が動物に与える影響(ノイズ)を排除するためなのですが、では一般の動物はどの程度、病原体に汚染されているのでしょうか。2015年に日本国内のペットショップで販売されているマウスの病原体保有状況を調べた報告(Hayashimoto N et al. Exp Anim. 2015;64:155-160.)がありますが、そちらの報告によると神奈川県と東京都の5つのペットショップに由来する28匹のマウスを検査したところ、以下のような結果(検出率)が得られたとのことです。

上記論文から引用

このようにペットショップごとにその検出率は異なるものの、多くの動物が微生物汚染を受けていることが分かりました。なお、人獣共通感染症を引き起こす病原体は検出されませんでしたが、動物に影響を及ぼす病原体は複数のペットショップから検出されています。これらの病原体は一般に飼育されている状態では特に問題がないことも多いのですが、動物実験に用いる際には状況が変わってきます。冒頭でも述べましたが、実験動物は余計なノイズを排除する必要があります。「再現性」は動物実験において最も重要な一つの要素ですが、動物によって病原体を持っていたり持っていなかったりすると、動物の状態が安定せず、試験結果の信頼性に影響する場合があります。また、このことによって実験に用いる動物の数が多くなってしまうことは避けるべきです。

コラム